def test_lazy_two_time(): setup() # run the correlation on the full stack full_gen = lazy_two_time(rois, img_stack, stack_size, stack_size, 1) for full_state in full_gen: pass final_result = two_time_state_to_results(full_state) # make sure we have essentially zero correlation in the images, # since they are random integers assert np.average(final_result.g2-1) < 0.01 # run the correlation on the first half gen_first_half = lazy_two_time(rois, img_stack[:stack_size//2], stack_size, num_bufs=stack_size, num_levels=1) for first_half_state in gen_first_half: pass # run the correlation on the second half by passing in the state from the # first half gen_second_half = lazy_two_time(rois, img_stack[stack_size//2:], stack_size, num_bufs=stack_size, num_levels=1, two_time_internal_state=first_half_state) for second_half_state in gen_second_half: pass result = two_time_state_to_results(second_half_state) assert np.all(full_state.g2 == result.g2)
def test_lazy_two_time(): setup() # run the correlation on the full stack full_gen = lazy_two_time(rois, img_stack, stack_size, stack_size, 1) for full_state in full_gen: pass final_result = two_time_state_to_results(full_state) # make sure we have essentially zero correlation in the images, # since they are random integers assert np.average(final_result.g2 - 1) < 0.01 # run the correlation on the first half gen_first_half = lazy_two_time(rois, img_stack[:stack_size // 2], stack_size, num_bufs=stack_size, num_levels=1) for first_half_state in gen_first_half: pass # run the correlation on the second half by passing in the state from the # first half gen_second_half = lazy_two_time(rois, img_stack[stack_size // 2:], stack_size, num_bufs=stack_size, num_levels=1, two_time_internal_state=first_half_state) for second_half_state in gen_second_half: pass result = two_time_state_to_results(second_half_state) assert np.all(full_state.g2 == result.g2)
def test_lazy_vs_original(): setup() # run the correlation on the full stack full_gen_one = lazy_one_time( img_stack, num_levels, num_bufs, rois) for gen_state_one in full_gen_one: pass g2, lag_steps = multi_tau_auto_corr(num_levels, num_bufs, rois, img_stack) assert np.all(g2 == gen_state_one.g2) assert np.all(lag_steps == gen_state_one.lag_steps) full_gen_two = lazy_two_time(rois, img_stack, stack_size, num_bufs, num_levels) for gen_state_two in full_gen_two: pass final_gen_result_two = two_time_state_to_results(gen_state_two) two_time = two_time_corr(rois, img_stack, stack_size, num_bufs, num_levels) assert np.all(two_time[0] == final_gen_result_two.g2) assert np.all(two_time[1] == final_gen_result_two.lag_steps)