コード例 #1
0
ファイル: theta.py プロジェクト: zhang-yuanye/sktime
    def fit(self, y_train, fh=None, X_train=None):
        """Fit to training data.

        Parameters
        ----------
        y_train : pd.Series
            Target time series to which to fit the forecaster.
        fh : int, list or np.array, optional (default=None)
            The forecasters horizon with the steps ahead to to predict.
        X_train : pd.DataFrame, optional (default=None)
            Exogenous variables are ignored
        Returns
        -------
        self : returns an instance of self.
        """
        sp = check_sp(self.sp)
        if sp > 1 and not self.deseasonalise:
            warn("`sp` is ignored when `deseasonalise`=False")

        if self.deseasonalise:
            self.deseasonaliser_ = Deseasonalizer(sp=self.sp,
                                                  model="multiplicative")
            y_train = self.deseasonaliser_.fit_transform(y_train)

        # fit exponential smoothing forecaster
        # find theta lines: Theta lines are just SES + drift
        super(ThetaForecaster, self).fit(y_train, fh=fh)
        self.smoothing_level_ = self._fitted_forecaster.params[
            "smoothing_level"]

        # compute trend
        self.trend_ = self._compute_trend(y_train)
        self._is_fitted = True
        return self
コード例 #2
0
ファイル: test_pipeline.py プロジェクト: zhang-yuanye/sktime
def test_pipeline():
    y = load_airline()
    y_train, y_test = temporal_train_test_split(y)

    f = TransformedTargetForecaster([
        ("t1", Deseasonalizer(sp=12, model="multiplicative")),
        ("t2", Detrender(PolynomialTrendForecaster(degree=1))),
        ("f", NaiveForecaster())
    ])
    fh = np.arange(len(y_test)) + 1
    f.fit(y_train, fh)
    actual = f.predict()

    def compute_expected_y_pred(y_train, fh):
        # fitting
        yt = y_train.copy()
        t1 = Deseasonalizer(sp=12, model="multiplicative")
        yt = t1.fit_transform(yt)
        t2 = Detrender(PolynomialTrendForecaster(degree=1))
        yt = t2.fit_transform(yt)
        f = NaiveForecaster()
        f.fit(yt, fh)

        # predicting
        y_pred = f.predict()
        y_pred = t2.inverse_transform(y_pred)
        y_pred = t1.inverse_transform(y_pred)
        return y_pred

    expected = compute_expected_y_pred(y_train, fh)
    np.testing.assert_array_equal(actual, expected)
コード例 #3
0
def test_deseasonalised_values(sp):
    t = Deseasonalizer(sp=sp)
    t.fit(y_train)
    a = t.transform(y_train)

    r = seasonal_decompose(y_train, period=sp)
    b = y_train - r.seasonal
    np.testing.assert_array_equal(a.values, b.values)
コード例 #4
0
def learn(series_data):
    model = TransformedTargetForecaster([
        ("deseasonalise", Deseasonalizer(model="multiplicative", sp=7)),
        ("detrend", Detrender(forecaster=PolynomialTrendForecaster(degree=4))),
        ("forecast", PolynomialTrendForecaster(degree=4))
    ])
    model.fit(series_data[:-2])
    return model
コード例 #5
0
def test_deseasonalised_values(sp):
    transformer = Deseasonalizer(sp=sp)
    transformer.fit(y_train)
    actual = transformer.transform(y_train)

    r = seasonal_decompose(y_train, period=sp)
    expected = y_train - r.seasonal
    np.testing.assert_array_equal(actual, expected)
コード例 #6
0
ファイル: test_pipeline.py プロジェクト: zhang-yuanye/sktime
    def compute_expected_y_pred(y_train, fh):
        # fitting
        yt = y_train.copy()
        t1 = Deseasonalizer(sp=12, model="multiplicative")
        yt = t1.fit_transform(yt)
        t2 = Detrender(PolynomialTrendForecaster(degree=1))
        yt = t2.fit_transform(yt)
        f = NaiveForecaster()
        f.fit(yt, fh)

        # predicting
        y_pred = f.predict()
        y_pred = t2.inverse_transform(y_pred)
        y_pred = t1.inverse_transform(y_pred)
        return y_pred
コード例 #7
0
# In[126]:

model = PolynomialTrendForecaster(degree=1)
transformer = Detrender(model)

yt = transformer.fit_transform(train)
trendline = model.fit(train).predict(fh=-np.arange(len(train)))

plot_ys(train, trendline, yt, labels=['series', 'trend', 'detrended'])

# ### Pipelining

# In[130]:

forecaster = TransformedTargetForecaster([
    ("deseasonalise", Deseasonalizer(model="multiplicative", sp=12)),
    ("detrend", Detrender(forecaster=PolynomialTrendForecaster(degree=1))),
    ("forecast",
     ReducedRegressionForecaster(regressor=regressor,
                                 window_length=12,
                                 strategy="recursive"))
])
forecaster.fit(train)
y_pred = forecaster.predict(fh)
plot_ys(train, test, y_pred, labels=["y_train", "y_test", "y_pred"])
smape_loss(test, y_pred)

# ## WORK IN PROGRESS

# ## Pipeline Tuning
コード例 #8
0
def test_transform_inverse_transform_equivalence(sp, model):
    t = Deseasonalizer(sp=sp, model=model)
    t.fit(y_train)
    yit = t.inverse_transform(t.transform(y_train))
    np.testing.assert_array_equal(y_train.index, yit.index)
    np.testing.assert_almost_equal(y_train.values, yit.values)
コード例 #9
0
def test_inverse_transform_time_index(sp, model):
    t = Deseasonalizer(sp=sp, model=model)
    t.fit(y_train)
    yit = t.inverse_transform(y_test)
    np.testing.assert_array_equal(yit.index, y_test.index)
コード例 #10
0
def test_transform_time_index(sp, model):
    transformer = Deseasonalizer(sp=sp, model=model)
    transformer.fit(y_train)
    yt = transformer.transform(y_test)
    np.testing.assert_array_equal(yt.index, y_test.index)