コード例 #1
0
def create_database(database_directory,
                    ontology='brainvisa-3.2.0',
                    allow_ro=False,
                    persistent=False):
    if not os.path.exists(database_directory):
        os.makedirs(database_directory)
    database_settings = neuroConfig.DatabaseSettings(database_directory)
    database = neuroHierarchy.SQLDatabase(os.path.join(
        database_directory, "database-%s.sqlite" % databaseVersion),
                                          database_directory,
                                          ontology,
                                          context=processes.defaultContext(),
                                          settings=database_settings)
    neuroHierarchy.databases.add(database)
    neuroConfig.dataPath.append(database_settings)
    try:
        database.clear(context=processes.defaultContext())
        database.update(context=processes.defaultContext())
    except:
        if not allow_ro:
            raise
    if persistent:
        configuration = Application().configuration
        configuration.databases.fso.append(
            databases_configuration.DatabasesConfiguration.FileSystemOntology(
                database_directory, selected=True, read_only=allow_ro))
        configuration.save(neuroConfig.userOptionFile)
    return database
コード例 #2
0
ファイル: main_window.py プロジェクト: neurospin/morphologist
    def on_action_brainvisa_configuration_triggered(self):
        from soma.wip.application.api import Application
        from soma.qtgui.api import ApplicationQtGUI
        from brainvisa.configuration import neuroConfig

        configuration = Application().configuration
        appGUI = ApplicationQtGUI()
        dialog = appGUI.createEditionDialog(configuration, parent=None, live=False, modal=True)
        from soma.qt4gui.configuration_qt4gui import ConfigurationWidget
        from soma.qt_gui.qt_backend import QtGui

        # remove the database panel and icon
        stackw = dialog.findChild(QtGui.QStackedWidget)
        dbwidget = stackw.widget(1)
        stackw.removeWidget(dbwidget)
        listw = dialog.findChild(QtGui.QSplitter).findChild(QtGui.QListWidget)
        listw.takeItem(1)

        result = dialog.exec_()
        if result:
            dialog.setObject(configuration)
        appGUI.closeEditionDialog(dialog)
        # if appGUI.edit(configuration, live=False, modal=True):
        if result:
            # from brainvisa.configuration import axon_capsul_config_link
            # axon_capsul_config_link.axon_to_capsul_config_sync(self.study)
            configuration.save(neuroConfig.userOptionFile)
            try:
                self.study.save_to_backup_file()
            except StudySerializationError as e:
                pass  # study is not saved, don't notify
コード例 #3
0
def validation():
    from soma.wip.application.api import Application
    from distutils.spawn import find_executable

    configuration = Application().configuration
    fsl_prefix = configuration.FSL.fsl_commands_prefix
    #checking for Niftyreg commands
    cmds = ['reg_f3d', 'reg_resample', 'reg_transform']
    for i, cmd in enumerate(cmds):
        executable = find_executable(cmd)
        if not executable:
            raise ValidationError(
                cmd +
                'command was not found.Please check your Niftyreg installation and/or version'
            )
    #checking for FSl's commands
    cmds = ['bet', 'flirt', 'dtifit']
    for i, cmd in enumerate(cmds):
        executable = find_executable(fsl_prefix + cmd)
        if not executable:
            raise ValidationError(
                cmd +
                'FSL command was not found.Please check your FSL installation and/or fsldir and fsl_commands_prefix setting in BranVISA'
            )
    pass
コード例 #4
0
def validation():

    from distutils.spawn import find_executable as find_exec
    configuration = Application().configuration
    #fsldir = configuration.FSL.fsldir
    #check for eddy implementations (two for fsl>5.0.10)
    eddy_cpu = find_exec('eddy_openmp')
    #pb ! executable can exist even if no GPU on the system (dont consider GPU for now)
    #eddy_gpu_old = os.path.join(fsldir ,'bin','eddy.gpu')
    #eddy_gpu_new = find_exec('eddy_cuda')
    eddy_base = find_exec('eddy')
    #For now we consider that there is a problem if no CPU implementation of eddy  is found
    if eddy_cpu is None and eddy_base is None:
        raise ValidationError(
            _t_('NO CPU implementation of eddy was found ! Check fsldir and fsl_command_prefix values into Brainvisa Preferences FSL menu !'
                ))
    cmds = [
        'fslmaths', 'fslroi', 'fsl_anat', 'fslmerge', 'topup', 'applytopup'
    ]
    for cmd in cmds:
        if not find_exec(configuration.FSL.fsl_commands_prefix + cmd):
            raise ValidationError(
                _t_(' FSL ' + cmd +
                    ' commandline could not be found. Check fsldir and fsl_command_prefix values into Brainvisa Preferences FSL menu !'
                    ))
    pass
コード例 #5
0
def validation():

    from distutils.spawn import find_executable as find_exec
    configuration = Application().configuration
    cmds = ['fslmaths', 'fugue', 'flirt']
    for cmd in cmds:
        if not find_exec(configuration.FSL.fsl_commands_prefix + cmd):
            raise ValidationError(
                _t_(' FSL ' + cmd +
                    ' commandline could not be found. Check fsldir and fsl_command_prefix values into Brainvisa Preferences FSL menu !'
                    ))
    pass
コード例 #6
0
def validation():
    from soma.wip.application.api import Application
    from distutils.spawn import find_executable as find_exec
    configuration = Application().configuration
    cmds = ['flseyes', 'fslview']
    viewers = [
        find_exec(configuration.FSL.fsl_commands_prefix + cmd) for cmd in cmds
    ]
    if not viewers[0] and not viewers[1]:
        raise ValidationError(
            _t_(' FSL ' + ' fsleyes and fslview ' +
                ' commandline could not be found. Check fsldir and fsl_command_prefix values into Brainvisa Preferences FSL menu !'
                ))
    pass
コード例 #7
0
def validation():
    from soma.wip.application.api import Application
    from distutils.spawn import find_executable
    configuration = Application().configuration
    fsl_prefix = configuration.FSL.fsl_commands_prefix
    cmds = ['fslsplit']
    for i, cmd in enumerate(cmds):
        executable = find_executable(fsl_prefix + cmd)
        if not executable:
            raise ValidationError(
                'FSL command ' + cmd +
                ' could not be located on your system. Please check you FSL installation and/or fsldir , fsl_commands_prefix variables in BrainVISA preferences'
            )
    pass
コード例 #8
0
def bvecRotation(ECpath, bvecs_in, bvecs_out):
    configuration = Application().configuration
    fsldir = configuration.FSL.fsldir
    log = os.path.splitext(os.path.splitext(ECpath)[0])[0] + '.ecclog'
    if not os.path.isfile(log):
        raise RuntimeError(_t_('Log file does not exist!'))
    if not os.path.isfile(bvecs_in):
        raise RuntimeError(_t_('Bvecs file does not exist!'))
    tmp_file = os.path.dirname(log) + '/tmp.mat'
    flog = open(log, 'r')
    lines = flog.readlines()
    bvecs = numpy.loadtxt(bvecs_in)
    cmd1 = '. ' + fsldir + '/etc/fslconf/fsl.sh'
    newX = []
    newY = []
    newZ = []
    line_count = 0
    file_count = 0
    print lines
    for l in lines:
        if l[:10] == "processing":
            line_count = 0
            mat_file = open(tmp_file, 'w+')
        elif l != '\n' and l != "Final result:\n":
            mat_file.writelines(l)
        if line_count == 7:
            mat_file.close()
            cmd2 = fsldir + '/bin/avscale --allparams ' + mat_file.name
            output = os.popen(cmd1 + ';' + cmd2).readlines()
            rX = float(output[1].split()[0]) * bvecs[0, file_count] + float(
                output[1].split()[1]) * bvecs[1, file_count] + float(
                    output[1].split()[2]) * bvecs[2, file_count]
            rY = float(output[2].split()[0]) * bvecs[0, file_count] + float(
                output[2].split()[1]) * bvecs[1, file_count] + float(
                    output[2].split()[2]) * bvecs[2, file_count]
            rZ = float(output[3].split()[0]) * bvecs[0, file_count] + float(
                output[3].split()[1]) * bvecs[1, file_count] + float(
                    output[3].split()[2]) * bvecs[2, file_count]
            newX.append(rX)
            newY.append(rY)
            newZ.append(rZ)
            file_count += 1
        line_count += 1
    numpy.savetxt(bvecs_out, [newX, newY, newZ])
    flog.close()
    os.remove(tmp_file)

    return 0
コード例 #9
0
def execution(self, context):
    configuration = Application().configuration

    old_spm_configuration = configuration.SPM
    if platform.system() == 'Linux':
        detectPathsForLinuxPlatform(context, configuration)
    elif platform.system() == 'Windows':
        context.warning(
            'The SPM paths auto detect is not yet configured for Windows platform'
        )
    else:
        context.error('Platform used is unvalid for this process')
        return 0

    if configuration.SPM.spm8_standalone_command:
        context.write('\nSetting up SPM templates database')

        # remove previous spm databases if any
        for old_spm_path in [
                old_spm_configuration.spm5_path,
                old_spm_configuration.spm8_standalone_path,
                old_spm_configuration.spm8_path
        ]:
            if old_spm_path:
                if neuroHierarchy.databases.hasDatabase(old_spm_path):
                    neuroHierarchy.databases.remove(old_spm_path)
                    for settings in neuroConfig.dataPath:
                        if settings.directory == old_spm_path:
                            neuroConfig.dataPath.remove(settings)

        dbs = neuroConfig.DatabaseSettings(
            configuration.SPM.spm8_standalone_command)
        dbs.expert_settings.ontology = 'spm'
        dbs.expert_settings.sqliteFileName = ':temporary:'
        dbs.expert_settings.uuid = 'a91fd1bf-48cf-4759-896e-afea136c0549'
        dbs.builtin = True
        neuroConfig.dataPath.insert(1, dbs)
        db = neuroHierarchy.SQLDatabase(
            dbs.expert_settings.sqliteFileName,
            configuration.SPM.spm8_standalone_command,
            'spm',
            settings=dbs)
        neuroHierarchy.databases.add(db)
        db.clear()
        db.update(context=defaultContext())
        neuroHierarchy.update_soma_workflow_translations()
コード例 #10
0
def validation():
    from soma.wip.application.api import Application
    from distutils.spawn import find_executable
    #checking for niftyreg
    #niftyreg_resample = find_executable('reg_resample')
    #if not niftyreg_resample:
    #raise ValidationError(_t_('Niftyreg executable NOT found !'))
    configuration = Application().configuration
    fsl_prefix = configuration.FSL.fsl_commands_prefix
    cmds = ['fslsplit', 'fnirt']
    for i, cmd in enumerate(cmds):
        executable = find_executable(fsl_prefix + cmd)
        if not executable:
            raise ValidationError(
                'FSL command ' + cmd +
                ' could not be located on your system. Please check you FSL installation and/or fsldir , fsl_commands_prefix variables in BrainVISA preferences'
            )
    pass
コード例 #11
0
def tensorFitting(context, dwi_path, gtab):

    configuration = Application().configuration
    cmds = ['fsleyes', 'fslview']
    viewers = [
        find_executable(configuration.FSL.fsl_commands_prefix + cmd)
        for cmd in cmds
    ]
    img = nib.load(dwi_path)
    data = img.get_data()
    tenmodel = dti.TensorModel(gtab)  # instantiate tensor model
    tenfit = tenmodel.fit(data)  # fit data to tensor model
    FA = dti.fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0  # correct for background value
    evecs = tenfit.evecs.astype(np.float32)
    e1 = evecs[..., 0]
    rgb = dti.color_fa(FA, evecs)
    tensor_fa = context.temporary('NIFTI-1 image')
    tensor_evecs = context.temporary('NIFTI-1 image')
    path_fa = tensor_fa.fullPath() + '_' + 'FA.nii.gz'
    path_e1 = tensor_evecs.fullPath() + '_' + 'first_eigenvector.nii.gz'
    fa_img = nib.Nifti1Image(FA.astype(np.float32), img.get_affine())
    nib.save(fa_img, path_fa)
    e1_img = nib.Nifti1Image(e1, img.get_affine())
    nib.save(e1_img, path_e1)
    context.write(
        'If color coding of FA map is not right, swap axes and run again')
    context.write(
        'If orientation of principal diffusion direction does not look right, flip the axis along which slices look good'
    )
    if viewers[0]:
        #display first eigen vector as line coloured by orientation and modulated by FA superimposed onto the FA volume (fsleyes only)
        cmd = [
            'fsleyes', path_fa, path_e1, '-ot', 'linevector', '-mr', '0 1',
            '-mo', path_fa
        ]
    else:
        #display FA and First Eigen vector as volumes (old way, display needs to be done by hand)
        cmd = ['fslview', path_fa, path_e1]
    context.system(*cmd)
    return FA, evecs, rgb
コード例 #12
0
def checkSPMCommand(context, cmd):
    configuration = Application().configuration
    spm_path = None
    mexe = distutils.spawn.find_executable(configuration.matlab.executable)
    if mexe == None:
        context.write('The Matlab executable was not found.')
        return
    matlab_script_diskitem = context.temporary('Matlab Script')
    spm_path_saving_text_file_diskitem = context.temporary('Text File')
    matlab_script_path = matlab_script_diskitem.fullPath()
    matlab_script = '''try
  a = which( \'''' + cmd + '''\' );
  if ~isempty( a )
    try
      ''' + cmd + ''';
    catch me
    end
  end
  spm_path = which( 'spm' );
  f = fopen( ''' + "'" + spm_path_saving_text_file_diskitem.fullPath(
    ) + "'" + ''', 'w' );
  fprintf( f, '%s\\n', spm_path );
catch me
end
exit;
'''
    open(matlab_script_path, 'w').write(matlab_script)
    cmd = [ mexe ] + configuration.matlab.options.split(' ') \
        + ['-r', os.path.basename(matlab_script_diskitem.fullName())]
    context.write('Attempt to run the matlab command: ' + repr(cmd))
    # print('running matlab command: ', cmd)
    try:
        context.system(*cmd, cwd=os.path.dirname(matlab_script_path))
    except Exception as e:
        return None
    spm_path = open(
        spm_path_saving_text_file_diskitem.fullPath()).read().strip()
    spm_directory = os.path.dirname(spm_path)
    return spm_directory
コード例 #13
0
def execution(self, context):
    # Create gradient table
    bvals = np.loadtxt(self.bvals.fullPath())
    bvecs = np.loadtxt(self.bvecs.fullPath())
    if self.swap_axes != "":
        bvecs = swapBvecs(bvecs, self.swap_axes)
        context.write(self.swap_axes[0], 'and', self.swap_axes[2],
                      'axes have been swapped !')
    if self.flip_axis != "":
        bvecs = flipBvecs(bvecs, self.flip_axis)
        context.write(self.flip_axis, 'axis has been flipped !')

    if self.visual_check == True:

        context.write('Tensor fitting...')
        data_path = context.temporary('gz compressed NIFTI-1 image')
        dimx = self.dwi_data.get('volume_dimension', search_header=True)[0]
        dimy = self.dwi_data.get('volume_dimension', search_header=True)[1]
        dimz = self.dwi_data.get('volume_dimension', search_header=True)[2]
        configuration = Application().configuration
        cmd = [
            configuration.FSL.fsl_commands_prefix + 'fslroi',
            self.dwi_data.fullPath(),
            data_path.fullPath(),
            str(dimx / 4),
            str(dimx / 2),
            str(dimy / 4),
            str(dimy / 2),
            str(dimz / 4),
            str(dimz / 2), '0', '-1'
        ]
        context.system(*cmd)
        gtab = gradient_table(bvals, bvecs)
        [FA, evecs, rgb] = tensorFitting(context, data_path.fullPath(), gtab)

    np.savetxt(self.reoriented_bvecs.fullPath(), bvecs)
コード例 #14
0
def execution(self, context):

    configuration = Application().configuration
    transformManager = getTransformationManager()

    t1_brain = context.temporary('NIFTI-1 image')
    context.system('AimsMask', '-i', self.T1_volume, '-m', self.T1_mask, '-o',
                   t1_brain)

    diff_to_t1_xfm = context.temporary('File')
    # t1_to_diff_xfm = context.temporary('File')
    fast_seg = context.temporary('File')

    context.write(
        'Registration of DWI to T1 space using FSL-epi_reg... [~15mn]')
    # cmd = [ configuration.FSL.fsl_commands_prefix + 'epi_reg', '-v', '--epi=' + self.b0_volume.fullPath(), '--t1=' + self.T1_volume.fullPath(), '--t1brain=' + t1_brain.fullPath(), '--out=' + diff_to_t1_xfm.fullPath() ]
    # context.system( *cmd )
    # context.system( 'cp', diff_to_t1_xfm.fullPath() + '.nii.gz', self.b0_to_T1 )
    context.write('- FAST segmentation')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fast', '-o',
        fast_seg.fullPath(),
        t1_brain.fullPath()
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        fast_seg.fullPath() + '_pve_2.nii.gz', '-thr', '0.5', '-bin',
        fast_seg.fullPath() + '_wmseg.nii.gz'
    ]
    context.system(*cmd)
    context.write('- pre-alignment 3dof')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-ref',
        t1_brain.fullPath(), '-in',
        self.b0_volume.fullPath(), '-dof', '3', '-omat',
        diff_to_t1_xfm.fullPath() + '_init.mat'
    ]
    context.system(*cmd)
    context.write('- flirt 6dof')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-ref',
        self.T1_volume.fullPath(), '-in',
        self.b0_volume.fullPath(), '-dof', '6', '-cost', 'bbr', '-wmseg',
        fast_seg.fullPath() + '_wmseg.nii.gz', '-init',
        diff_to_t1_xfm.fullPath() + '_init.mat', '-omat',
        diff_to_t1_xfm.fullPath() + '.mat', '-out',
        diff_to_t1_xfm.fullPath(), '-schedule',
        configuration.FSL.fsldir + '/etc/flirtsch/bbr.sch'
    ]
    context.system(*cmd)
    context.write('- applywarp')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        self.b0_volume.fullPath(), '-r',
        self.T1_volume.fullPath(), '-o', self.b0_to_T1,
        '--premat=' + diff_to_t1_xfm.fullPath() + '.mat', '--interp=spline'
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.T1_volume, self.b0_to_T1)

    context.write('Conversion from .mat to .trm')
    trm = fslTransformation.fslMatToTrm(diff_to_t1_xfm.fullPath() + '.mat',
                                        self.b0_volume.fullPath(),
                                        diff_to_t1_xfm.fullPath())
    aims.write(trm, self.diff_to_T1_linear_xfm.fullPath())

    context.write('Invert transformation...')
    cmd = [
        'AimsInvertTransformation', '-i', self.diff_to_T1_linear_xfm, '-o',
        self.T1_to_diff_linear_xfm
    ]
    context.system(*cmd)

    context.write('Registration of T1 to DWI space...')
    cmd = [
        'AimsResample', '-i', self.T1_volume, '-m', self.T1_to_diff_linear_xfm,
        '-t', self.T1_to_b0_interpolation, '-o', self.T1_to_b0
    ]
    if self.T1_to_b0_resampling == True:
        cmd += ['-r', self.b0_volume]
    elif self.T1_to_b0_resampling == False:
        dim = self.b0_volume.get('volume_dimension', search_header=True)
        context.write(dim)
        vox_ref = self.b0_volume.get('voxel_size', search_header=True)
        vox_in = self.T1_volume.get('voxel_size', search_header=True)
        context.write(vox_ref)
        context.write(vox_in)
        cmd += [
            '--dx',
            str(int(dim[0] * vox_ref[0] / vox_in[0]) + 1), '--dy',
            str(int(dim[1] * vox_ref[1] / vox_in[1]) + 1), '--dz',
            str(int(dim[2] * vox_ref[2] / vox_in[2]) + 1)
        ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0)

    context.write('Registration of T1 brain mask to DWI space...')
    cmd = [
        'AimsResample', '-i', self.T1_mask, '-m', self.T1_to_diff_linear_xfm,
        '-t', self.T1_to_b0_interpolation, '-o', self.T1_to_b0_mask
    ]
    ##    if self.T1_to_b0_resampling == True:
    cmd += ['-r', self.b0_volume]
    ##    elif self.T1_to_b0_resampling == False:
    ##      cmd+=[ '--dx', str(dim[0]*vox_ref[0]/vox_in[0]), '--dy', str(dim[1]*vox_ref[1]/vox_in[1]), '--dz', str(dim[2]*vox_ref[2]/vox_in[2]) ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_mask)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_mask, '-o', self.T1_to_b0_mask,
        '-t', '1', '-b', '--fg', '1'
    ]
    context.system(*cmd)

    context.write('Recompile left-right grey-matter and white-matter...')
    Left = aims.read(self.T1_grey_white_left.fullPath())
    Right = aims.read(self.T1_grey_white_right.fullPath())
    Left_Right = Left + Right
    GM = Left.arraydata()
    GM[:, :, :, :] = 0
    GM[numpy.where(Left_Right.arraydata() == 100)] = 100
    WM = Right.arraydata()
    WM[:, :, :, :] = 0
    WM[numpy.where(Left_Right.arraydata() == 200)] = 100
    GM_vol = aims.Volume(GM)
    WM_vol = aims.Volume(WM)
    GM_vol.copyHeaderFrom(Left.header())
    WM_vol.copyHeaderFrom(Left.header())
    GM_file = context.temporary('NIFTI-1 image')
    WM_file = context.temporary('NIFTI-1 image')
    aims.write(GM_vol, GM_file.fullPath())
    aims.write(WM_vol, WM_file.fullPath())

    context.write(
        'Registration of white-matter and grey-matter masks to DWI space...')
    cmd = [
        'AimsResample', '-i',
        GM_file.fullPath(), '-m', self.T1_to_diff_linear_xfm, '-t', '0', '-o',
        self.T1_to_b0_GM, '-d', '1'
    ]
    ##    if self.T1_to_b0_resampling == True:
    cmd += ['-r', self.b0_volume]
    ##    elif self.T1_to_b0_resampling == False:
    ##      dim = self.b0_volume.get( 'volume_dimension', search_header=True )
    ##      vox_ref = self.b0_volume.get( 'voxel_size', search_header=True )
    ##      vox_in = self.T1_volume.get( 'voxel_size', search_header=True )
    ##      cmd+=[ '--dx', str(dim[0]*vox_ref[0]/vox_in[0]), '--dy', str(dim[1]*vox_ref[1]/vox_in[1]), '--dz', str(dim[2]*vox_ref[2]/vox_in[2]) ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_GM)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_GM, '-o', self.T1_to_b0_GM, '-t',
        '2', '-b', '--fg', '1'
    ]
    context.system(*cmd)
    cmd = [
        'AimsResample', '-i',
        WM_file.fullPath(), '-m', self.T1_to_diff_linear_xfm, '-t', '0', '-o',
        self.T1_to_b0_WM, '-d', '1'
    ]
    ##    if self.T1_to_b0_resampling == True:
    cmd += ['-r', self.b0_volume]
    ##    elif self.T1_to_b0_resampling == False:
    ##      cmd+=[ '--dx', str(dim[0]*vox_ref[0]/vox_in[0]), '--dy', str(dim[1]*vox_ref[1]/vox_in[1]), '--dz', str(dim[2]*vox_ref[2]/vox_in[2]) ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_WM)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_WM, '-o', self.T1_to_b0_WM, '-t',
        '2', '-b', '--fg', '1'
    ]
    context.system(*cmd)

    context.write('Recompile T1 left-right skeletons...')
    Left = aims.read(self.T1_skeleton_left.fullPath())
    Right = aims.read(self.T1_skeleton_right.fullPath())
    Lskeleton = Left.arraydata()
    Rskeleton = Right.arraydata()
    Lskeleton[Lskeleton < 20] = 0
    Lskeleton[Lskeleton > 20] = 1
    Rskeleton[Rskeleton < 20] = 0
    Rskeleton[Rskeleton > 20] = 1
    Lskeleton_vol = aims.Volume(Lskeleton)
    Rskeleton_vol = aims.Volume(Rskeleton)
    skeleton = Lskeleton_vol + Rskeleton_vol
    skeleton.copyHeaderFrom(Left.header())
    skeleton_file = context.temporary('NIFTI-1 image')
    aims.write(skeleton, skeleton_file.fullPath())

    context.write('Registration of T1 skeleton mask to DWI space...')
    cmd = [
        'AimsResample', '-i',
        skeleton_file.fullPath(), '-m', self.T1_to_diff_linear_xfm, '-t', '0',
        '-o', self.T1_to_b0_skeleton, '-d', '1'
    ]
    ##    if self.T1_to_b0_resampling == True:
    cmd += ['-r', self.b0_volume]
    ##    elif self.T1_to_b0_resampling == False:
    ##      cmd+=[ '--dx', str(dim[0]*vox_ref[0]/vox_in[0]), '--dy', str(dim[1]*vox_ref[1]/vox_in[1]), '--dz', str(dim[2]*vox_ref[2]/vox_in[2]) ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_skeleton)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_skeleton, '-o',
        self.T1_to_b0_skeleton, '-t', '1', '-b', '--fg', '1'
    ]
    context.system(*cmd)
    cmd = [
        'AimsMask', '-i', self.T1_to_b0_skeleton, '-o', self.T1_to_b0_skeleton,
        '-m', self.T1_to_b0_WM, '--inv', 'True'
    ]
    context.system(*cmd)

    context.write('Finished')
コード例 #15
0
def execution( self, context ):
    
    configuration = Application().configuration

    FSL_eddy_directory = os.path.dirname(self.eddy_b0_volumes.fullPath())
    
    context.write('Setting acquisition parameters')
    img = aims.read(self.dwi_data.fullPath())
    dwi_data = img.arraydata()
    Nvol = self.dwi_data.get('volume_dimension', search_header=True)[3]
    bvals = numpy.loadtxt(self.bvals.fullPath())
    b0_index = numpy.where(bvals < 100)[0] ## bvals==0 not possible when bvalues take values +-5 or +-10
    b0_sum = dwi_data[b0_index,:,:,:]
    b0_vol = aims.Volume(b0_sum)
    b0_vol.copyHeaderFrom(img.header())
    aims.write(b0_vol, self.eddy_b0_volumes.fullPath())

    PE_parameters = self.eddy_parameters.fullPath()
    PE_index = self.eddy_index.fullPath()
    PE_list = ["AP", "PA", "LR", "RL"]
    vector_list = ['0 1 0 ', '0 -1 0 ', '1 0 0 ', '-1 0 0 ']
    indx = PE_list.index(self.phase_encoding_direction)
    f_param = open(PE_parameters, 'w')
    f_index = open(PE_index, 'w')
    [f_param.write(vector_list[indx] + str(self.readout_time) + '\n') for i in range(len(b0_index))]
    val = 1
    for i in range(len(bvals)):
        if i in b0_index[1:]:
            val += 1
        f_index.write(str(val) + ' ')
    # tmp = [f_index.write('1 ') for i in range(len(bvals))]
    f_param.close()
    f_index.close()

    context.write('Eddy current estimation and correction... [can take several hours]')
    cmd = [ configuration.FSL.fsl_commands_prefix + 'fslmaths', self.eddy_b0_volumes.fullPath(), '-Tmean', self.eddy_b0_mean.fullPath() ]
    context.system( *cmd )
    BrainExtraction.defaultBrainExtraction(self.eddy_b0_mean.fullPath(), self.eddy_b0_mean_brain.fullPath(), f=str(self.brain_extraction_factor))
    fsldir = configuration.FSL.fsldir
    eddyExec = find_executable('eddy_openmp')
    if eddyExec:
        context.write('CPU-multithread version of eddy found')
    else:
        context.write('No CPU-multithread version of eddy found')
        eddyExec = find_executable('eddy')

        #eddyExec = fsldir + '/bin/eddy.gpu'
        #if os.path.isfile(eddyExec) == True:
            #context.write('GPU-multithread version of eddy found')
        #else:
            #eddyExec = fsldir + '/bin/eddy_cuda'
            #if os.path.isfile(eddyExec) == True:
                #context.write('GPU-multithread version of eddy found')
            #else:
                #context.write('CPU/GPU-multithread version of eddy NOT found')
                #eddyExec = fsldir + '/bin/eddy'
                #if not os.path.isfile(eddyExec):
                    #raise
    if self.entire_sphere_sampling == False or Nvol < 60:
        if Nvol < 30:
            context.write('WARNING: For eddy to work well, data should contain more than 30 directions!')
        slm = "linear"
    else:
        slm = "none"
    cmd1 = '. ' + fsldir + '/etc/fslconf/fsl.sh'
    cmd2 = eddyExec + ' --imain=' + self.dwi_data.fullPath() + ' --mask=' + self.eddy_b0_mean_brain_mask.fullPath() + ' --acqp=' + self.eddy_parameters.fullPath() + ' --index=' + self.eddy_index.fullPath() + ' --bvecs=' + self.bvecs.fullPath() + ' --bvals=' + self.bvals.fullPath() + ' --out=' + FSL_eddy_directory + '/eddy'
    cmd2 += ' --flm=' + str(self.flm) + ' --slm=' + slm + ' --fwhm=' + str(self.fwhm) + ',0,0,0,0' + ' --niter=' + str(self.niter) + ' --fep --interp=spline --resamp=jac --nvoxhp=' + str(self.nvoxhp) + ' --ff=10 --very_verbose'
    if not self.multi_shell:
        cmd2 += " --dont_peas"
    else:
        cmd2 += " --data_is_shelled" # option does NOT exist in FSL version under 5.0.10 (how to test an option exist in a command)
    cmd = cmd1 + ' ; ' + cmd2
    os.system( cmd )

    context.system(configuration.FSL.fsl_commands_prefix + 'fslmaths', FSL_eddy_directory + '/eddy.nii.gz', '-abs', self.dwi_eddy_corrected.fullPath())  # remove negative values
    shutil.copy2(FSL_eddy_directory + '/eddy.eddy_rotated_bvecs', self.corrected_bvecs.fullPath())
    
    transformManager = getTransformationManager()
    transformManager.copyReferential( self.dwi_data, self.dwi_eddy_corrected )

    context.write('Finished')
コード例 #16
0
def execution(self, context):

    configuration = Application().configuration

    tmp_file = context.temporary('File')
    tmp_deform = context.temporary('File')

    #if self.registration_method == 'niftyreg':
    # new niftyreg deformation volume is X,Y,Z,1,3 instead of X,Y,Z,3
    deform_vol = nib.load(self.diff_to_T1_nonlinear_dfm.fullPath())
    if len(deform_vol.shape) == 5:
        deform = deform_vol.get_data()
        deform = deform[..., 0, :]
        nib.save(nib.Nifti1Image(deform, deform_vol.affine),
                 tmp_deform.fullPath() + '.nii.gz')
    else:
        nib.save(deform_vol, tmp_deform.fullPath() + '.nii.gz')
    #reuse Lucile code to split volume cause dont want to mess with orientations as it worked
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslsplit',
        tmp_deform.fullPath() + '.nii.gz',
        tmp_file.fullPath(), '-t'
    ]
    context.system(*cmd)
    context.write(tmp_file.fullPath())
    f1 = aims.read(tmp_file.fullPath() + '0000.nii.gz')
    f2 = aims.read(tmp_file.fullPath() + '0001.nii.gz')
    f3 = aims.read(tmp_file.fullPath() + '0002.nii.gz')
    f = np.concatenate((f1.arraydata(), f2.arraydata(), f3.arraydata()))
    field = np.swapaxes(f, 0, 3)
    field = np.swapaxes(field, 1, 2)
    vxsize = np.array(f1.header()['voxel_size'][:3])
    affine = f1.header()['transformations']
    affine_mm = np.reshape(affine[0], (4, 4))

    mesh = aims.read(self.WM_mesh_in_T1.fullPath())
    new_mesh = meshTransform(mesh, field, vxsize, affine_mm)
    aims.write(new_mesh, self.WM_mesh_in_DWI.fullPath())
    cmd = [
        'AimsMeshTransform', '-i', self.WM_mesh_in_DWI, '-t',
        self.T1_to_diff_linear_xfm, '-o', self.WM_mesh_in_DWI
    ]
    context.system(*cmd)
    transformManager = getTransformationManager()
    transformManager.copyReferential(self.b0_volume, self.WM_mesh_in_DWI)

    mesh = aims.read(self.GM_mesh_in_T1.fullPath())
    new_mesh = meshTransform(mesh, field, vxsize, affine_mm)
    aims.write(new_mesh, self.GM_mesh_in_DWI.fullPath())
    cmd = [
        'AimsMeshTransform', '-i', self.GM_mesh_in_DWI, '-t',
        self.T1_to_diff_linear_xfm, '-o', self.GM_mesh_in_DWI
    ]
    context.system(*cmd)
    transformManager = getTransformationManager()
    transformManager.copyReferential(self.b0_volume, self.GM_mesh_in_DWI)

    # elif self.registration_method == 'fnirt':
    #     field_file = context.temporary('gz compressed NIFTI-1 image')
    #     # cmd = [configuration.FSL.fsl_commands_prefix + 'fnirtfileutils', '-i', self.diff_to_T1_nonlinear_dfm.fullPath(), '-r', self.T1_volume.fullPath(), '-o', field_file.fullPath()]
    #     # context.system(*cmd)
    #     cmd = [configuration.FSL.fsl_commands_prefix + 'fslsplit', self.diff_to_T1_nonlinear_dfm.fullPath(), tmp_file.fullPath(), '-t']
    #     context.system(*cmd)
    #     f1 = aims.read(tmp_file.fullPath() + '0000.nii.gz')
    #     f2 = aims.read(tmp_file.fullPath() + '0001.nii.gz')
    #     f3 = aims.read(tmp_file.fullPath() + '0002.nii.gz')
    #     f = np.concatenate((f1.arraydata(), f2.arraydata(), f3.arraydata()))
    #     field = np.swapaxes(f, 0, 3)
    #     field = np.swapaxes(field, 1, 2)
    #     t1 = aims.read(self.T1_volume.fullPath())
    #     vxsize = np.array(f1.header()['voxel_size'][:3])
    #     affine = t1.header()['transformations']
    #     # affine = f1.header()['transformations']
    #     affine_mm = np.reshape(affine[0], (4, 4))
    #
    #     mesh = aims.read(self.WM_mesh_in_T1.fullPath())
    #     new_mesh = meshTransform(mesh, field, vxsize, affine_mm)
    #     aims.write(new_mesh, self.WM_mesh_in_DWI.fullPath())
    #     transformManager = getTransformationManager()
    #     transformManager.copyReferential(self.b0_volume, self.WM_mesh_in_DWI)
    #
    #     mesh = aims.read(self.GM_mesh_in_T1.fullPath())
    #     new_mesh = meshTransform(mesh, field, vxsize, affine_mm)
    #     aims.write(new_mesh, self.GM_mesh_in_DWI.fullPath())
    #     transformManager = getTransformationManager()
    #     transformManager.copyReferential(self.b0_volume, self.GM_mesh_in_DWI)

    context.write('Finished')
コード例 #17
0
def execution(self, context):

    configuration = Application().configuration
    transformManager = getTransformationManager()
    niftyreg_resample = find_executable('reg_resample')
    #no longer needed since validation check !
    #if not niftyreg_resample:
    #raise RuntimeError(_t_('Niftyreg executable NOT found !'))

    reg = context.temporary('File')
    tmp_file = context.temporary('gz compressed NIFTI-1 image')

    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.ROI_in_T1.fullPath()
    ]
    if self.lower_thresh is not None:
        cmd += ['-thr', self.lower_thresh]
    if self.upper_thresh is not None:
        cmd += ['-uthr', self.upper_thresh]
    cmd += ['-bin', tmp_file.fullPath()]
    context.system(*cmd)

    ## A SUPPRIMER EN DEHORS DU HCP : A CAUSE ORIENTATION RAS A POSTERIORI
    # tmp_b0 = context.temporary('gz compressed NIFTI-1 image')
    # os.system(' '.join(['AimsFileConvert', '-i', self.b0_volume.fullPath(), '-o', tmp_b0.fullPath(), '--orient', '"abs: 1 -1 -1"']))
    ##

    if self.T1_to_b0_registration_method == 'niftyreg':
        cmd = [
            niftyreg_resample, '-ref',
            self.T1_volume.fullPath(), '-flo',
            tmp_file.fullPath(), '-trans',
            self.T1_to_diff_nonlinear_dfm.fullPath(), '-res',
            reg.fullPath() + '_ROI.nii.gz', '-inter', '0'
        ]
        context.system(*cmd)
        cmd = [
            'AimsResample', '-i',
            reg.fullPath() + '_ROI.nii.gz', '-m', self.T1_to_diff_linear_xfm,
            '-t', '0', '-o', self.ROI_in_DWI, '-d', '1', '-r',
            self.b0_volume.fullPath()
        ]
        context.system(*cmd)

    elif self.T1_to_b0_registration_method == 'fnirt':
        cmd = [
            configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
            tmp_file.fullPath(), '-r',
            self.b0_volume.fullPath(), '-o',
            self.ROI_in_DWI.fullPath(), '-w',
            self.T1_to_diff_nonlinear_dfm.fullPath(), '--interp=nn'
        ]
        context.system(*cmd)

    if self.binarise:
        cmd = [
            configuration.FSL.fsl_commands_prefix + 'fslmaths',
            self.ROI_in_DWI.fullPath(), '-thr', self.threshold, '-bin',
            self.ROI_in_DWI.fullPath()
        ]  # , '--fg', '1']
    else:
        cmd = [
            configuration.FSL.fsl_commands_prefix + 'fslmaths',
            self.ROI_in_DWI.fullPath(), '-thr', self.threshold,
            self.ROI_in_DWI.fullPath()
        ]  # , '--fg', '1']
    context.system(*cmd)
    # ref = self.b0_volume.get('storage_to_memory', search_header=True)
    # transformManager.copyReferential(self.b0_volume, self.ROI_in_DWI)

    ## A SUPPRIMER EN DEHORS DU HCP : A CAUSE ORIENTATION RAS A POSTERIORI
    # os.system(' '.join(['AimsFileConvert', '-i', self.ROI_in_DWI.fullPath(), '-o', self.ROI_in_DWI.fullPath(), '--orient', '"abs: -1 -1 -1"']))
    ##

    context.write('Finished')
コード例 #18
0
def execution(self, context):

    configuration = Application().configuration
    transformManager = getTransformationManager()

    context.write('Fractional anisotropy temporary estimation')
    dtifit = context.temporary('File')
    mask = context.temporary('File')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'bet',
        self.b0_volume.fullPath(),
        mask.fullPath(), '-f', '0.3', '-m'
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'dtifit', '-k',
        self.dwi_data.fullPath(), '-o',
        dtifit.fullPath(), '-m',
        mask.fullPath() + '_mask.nii.gz', '-r',
        self.bvecs.fullPath(), '-b',
        self.bvals.fullPath()
    ]
    context.system(*cmd)
    FA = dtifit.fullPath() + '_FA.nii.gz'

    context.write('Fractional anisotropy bias correction')
    bias_corr = context.temporary('File')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fsl_anat', '-i', FA, '-o',
        bias_corr.fullPath(), '-t', 'T2', '--clobber', '--strongbias',
        '--noreorient', '--nocrop', '--noreg', '--nononlinreg', '--noseg',
        '--nosubcortseg'
    ]
    context.system(*cmd)
    FA_biascorr = bias_corr.fullPath() + '.anat/T2_biascorr.nii.gz'

    context.write('T1 white-matter segmentation')
    t1_brain = context.temporary('NIFTI-1 image')
    fast_seg = context.temporary('File')
    T1_mask_bin = context.temporary('NIFTI-1 image')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.T1_mask.fullPath(), '-bin', T1_mask_bin
    ]
    context.system(*cmd)
    context.system('AimsMask', '-i', self.T1_volume, '-m',
                   T1_mask_bin.fullPath(), '-o', t1_brain.fullPath())
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fast', '-o',
        fast_seg.fullPath(),
        t1_brain.fullPath()
    ]
    context.system(*cmd)
    T1_white_matter = fast_seg.fullPath() + '_pve_2.nii.gz'
    T1_grey_matter = fast_seg.fullPath() + '_pve_1.nii.gz'
    T1_csf = fast_seg.fullPath() + '_pve_0.nii.gz'

    context.write('Affine pre-alignment')
    diff_to_t1_lin = context.temporary('File')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-ref',
        T1_white_matter, '-in', FA_biascorr, '-dof', '6', '-omat',
        diff_to_t1_lin.fullPath()
    ]
    context.system(*cmd)

    context.write('Non linear registration')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fnirt',
        '--ref=' + T1_white_matter, '--in=' + FA_biascorr,
        '--aff=' + diff_to_t1_lin.fullPath(),
        '--cout=' + self.diff_to_T1_nonlinear_dfm.fullPath(),
        '--refmask=' + T1_mask_bin.fullPath(), '--intmod=global_linear'
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        self.b0_volume.fullPath(), '-r', T1_white_matter, '-o',
        self.b0_to_T1.fullPath(), '-w',
        self.diff_to_T1_nonlinear_dfm.fullPath(), '--interp=spline'
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.T1_volume, self.b0_to_T1)

    ## Non applicable to non-linear warp image
    ## To compute only for anatomist to load files in the same referential
    context.write('Conversion from .mat to .trm')
    trm = fslTransformation.fslMatToTrm(diff_to_t1_lin.fullPath(),
                                        self.b0_volume.fullPath(),
                                        self.b0_to_T1.fullPath())
    aims.write(trm, self.diff_to_T1_linear_xfm.fullPath())
    context.write('Invert transformation...')
    cmd = [
        'AimsInvertTransformation', '-i', self.diff_to_T1_linear_xfm, '-o',
        self.T1_to_diff_linear_xfm
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'invwarp',
        '--ref=' + self.b0_volume.fullPath(),
        '--warp=' + self.diff_to_T1_nonlinear_dfm.fullPath(),
        '--out=' + self.T1_to_diff_nonlinear_dfm.fullPath()
    ]
    context.system(*cmd)

    ## Transport T1 space maps to DWI
    context.write('Registration of T1 to DWI space...')
    print(self.T1_to_b0_interpolation)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        self.T1_volume.fullPath(), '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(),
        '--interp=' + self.T1_to_b0_interpolation
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0)

    context.write('Registration of T1 PVE maps to DWI space...')

    context.write('White matter Partial Volume Estimation Map')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        T1_white_matter, '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_WM_pve.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(),
        '--interp=' + self.T1_to_b0_interpolation
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_WM_pve)

    context.write('Grey matter Partial Volume Estimation Map')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        T1_grey_matter, '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_GM_pve.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(),
        '--interp=' + self.T1_to_b0_interpolation
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_GM_pve)

    context.write('CSF Partial Volume Estimation Map')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i', T1_csf,
        '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_CSF_pve.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(),
        '--interp=' + self.T1_to_b0_interpolation
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_CSF_pve)

    context.write('Registration of T1 brain mask to DWI space...')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        self.T1_mask.fullPath(), '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_mask.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(),
        '--interp=' + self.T1_to_b0_interpolation
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.T1_to_b0_mask.fullPath(), '-bin',
        self.T1_to_b0_mask.fullPath()
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_mask)

    context.write('Recompile left-right grey-matter and white-matter...')
    Left = aims.read(self.T1_grey_white_left.fullPath())
    Right = aims.read(self.T1_grey_white_right.fullPath())
    Left_Right = Left + Right
    GM = Left.arraydata()
    GM[:, :, :, :] = 0
    GM[numpy.where(Left_Right.arraydata() == 100)] = 100
    WM = Right.arraydata()
    WM[:, :, :, :] = 0
    WM[numpy.where(Left_Right.arraydata() == 200)] = 100
    GM_vol = aims.Volume(GM)
    WM_vol = aims.Volume(WM)
    GM_vol.copyHeaderFrom(Left.header())
    WM_vol.copyHeaderFrom(Left.header())
    GM_file = context.temporary('NIFTI-1 image')
    WM_file = context.temporary('NIFTI-1 image')
    aims.write(GM_vol, GM_file.fullPath())
    aims.write(WM_vol, WM_file.fullPath())

    context.write(
        'Registration of white-matter and grey-matter masks to DWI space...')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        GM_file.fullPath(), '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_GM.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '--interp=nn'
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.T1_to_b0_GM.fullPath(), '-thr', '50', '-bin',
        self.T1_to_b0_GM.fullPath()
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_GM)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        WM_file.fullPath(), '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_WM.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '--interp=nn'
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.T1_to_b0_WM.fullPath(), '-thr', '50', '-bin',
        self.T1_to_b0_WM.fullPath()
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_WM)

    context.write('Recompile T1 left-right skeletons...')
    Left = aims.read(self.T1_skeleton_left.fullPath())
    Right = aims.read(self.T1_skeleton_right.fullPath())
    Lskeleton = Left.arraydata()
    Rskeleton = Right.arraydata()
    Lskeleton[Lskeleton < 20] = 0
    Lskeleton[Lskeleton > 20] = 1
    Rskeleton[Rskeleton < 20] = 0
    Rskeleton[Rskeleton > 20] = 1
    Lskeleton_vol = aims.Volume(Lskeleton)
    Rskeleton_vol = aims.Volume(Rskeleton)
    skeleton = Lskeleton_vol + Rskeleton_vol
    skeleton.copyHeaderFrom(Left.header())
    skeleton_file = context.temporary('NIFTI-1 image')
    aims.write(skeleton, skeleton_file.fullPath())

    context.write('Registration of T1 skeleton mask to DWI space...')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'applywarp', '-i',
        skeleton_file.fullPath(), '-r',
        self.b0_volume.fullPath(), '-o',
        self.T1_to_b0_skeleton.fullPath(), '-w',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '--interp=nn'
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.T1_to_b0_skeleton.fullPath(), '-bin',
        self.T1_to_b0_skeleton.fullPath()
    ]
    context.system(*cmd)
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0_skeleton)
    cmd = [
        'AimsMask', '-i', self.T1_to_b0_skeleton, '-o', self.T1_to_b0_skeleton,
        '-m', self.T1_to_b0_WM, '--inv', 'True'
    ]
    context.system(*cmd)

    context.write('Finished')
コード例 #19
0
def execution(self, context):

    context.write(
        'Susceptibility induced distortion correction using Fieldmap... [~1mn]'
    )

    context.write('- Identification of first b0 volume')
    img = aims.read(self.dwi_data.fullPath())
    dwi_data = img.arraydata()
    bvals = numpy.loadtxt(self.bvals.fullPath())
    b0_index = numpy.where(bvals < 100)[
        0]  ## bvals==0 not possible when bvalues take values +-5 or +-10
    b0 = dwi_data[b0_index[0], :, :, :]
    b0_vol = aims.Volume(b0)
    b0_vol.copyHeaderFrom(img.header())
    b0_tmp = context.temporary('NIFTI-1 image')
    aims.write(b0_vol, b0_tmp.fullPath())

    configuration = Application().configuration
    FSL_directory = os.path.dirname(self.fieldmap_brain.fullPath())

    PE_list = ["AP", "PA", "LR", "RL"]
    dir_list = ["y-", "y", "x-", "x"]
    warping_direction = dir_list[PE_list.index(self.phase_encoding_direction)]

    context.write('- Brain extraction of magnitude image')
    BrainExtraction.defaultBrainExtraction(self.magnitude.fullPath(),
                                           self.magnitude_brain.fullPath(),
                                           f=str(self.brain_extraction_factor))
    # cmd = [ configuration.FSL.fsl_commands_prefix + 'fslmaths', self.fieldmap.fullPath(), '-mas', self.magnitude_brain.fullPath(), self.fieldmap_brain.fullPath() ]
    # context.system( *cmd )

    # unmask the fieldmap (necessary to avoid edge effects)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.magnitude_brain.fullPath(), '-bin',
        self.magnitude_brain_mask.fullPath()
    ]  #
    context.system(*cmd)  #
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fugue',
        '--loadfmap=' + self.fieldmap.fullPath(),
        '--mask=' + self.magnitude_brain_mask.fullPath(), '--unmaskfmap',
        '--savefmap=' + self.fieldmap_brain.fullPath(),
        '--unwarpdir=' + warping_direction
    ]  #
    context.system(*cmd)  #

    context.write('- Fieldmap smoothing')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fugue',
        '--loadfmap=' + self.fieldmap_brain.fullPath(), '--despike',
        '--smooth3=' + str(self.fieldmap_smoothing),
        '--savefmap=' + self.fieldmap_brain.fullPath()
    ]
    context.system(*cmd)

    context.write('- Magnitude image warping using fieldmap')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fugue', '-v', '-i',
        self.magnitude_brain.fullPath(), '--dwell=' + str(self.echo_spacing),
        '--unwarpdir=' + warping_direction,
        '--loadfmap=' + self.fieldmap_brain.fullPath(), '-w',
        self.magnitude_warped.fullPath()
    ]
    context.system(*cmd)

    context.write('- Registration of fieldmap into diffusion space')
    cmd1 = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-dof', '12', '-in',
        self.magnitude_warped.fullPath(), '-ref',
        b0_tmp.fullPath(), '-out',
        self.magnitude_warped_to_dwi.fullPath(), '-omat',
        self.fieldmap_to_dwi_mat.fullPath()
    ]
    cmd2 = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-dof', '12', '-in',
        self.fieldmap_brain.fullPath(), '-ref',
        b0_tmp.fullPath(), '-applyxfm', '-init',
        self.fieldmap_to_dwi_mat.fullPath(), '-out',
        self.fieldmap_to_dwi.fullPath()
    ]
    context.system(*cmd1)
    context.system(*cmd2)
    transformManager = getTransformationManager()
    transformManager.copyReferential(self.dwi_data,
                                     self.magnitude_warped_to_dwi)
    transformManager.copyReferential(self.dwi_data, self.fieldmap_to_dwi)

    context.write('- Unwarping of dwi image using fieldmap')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fugue', '-v', '-i',
        self.dwi_data.fullPath(), '--dwell=' + str(self.echo_spacing),
        '--unwarpdir=' + warping_direction,
        '--loadfmap=' + self.fieldmap_to_dwi.fullPath(), '-u',
        self.dwi_unwarped.fullPath(), '--icorr',
        '--saveshift=' + FSL_directory + '/pixel_shift.nii.gz'
    ]  #'--mask=' + self.magnitude_warped_to_dwi_brain_mask.fullPath(), '--smooth3='  + str(self.fieldmap_smoothing),
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        self.dwi_unwarped.fullPath(), '-abs',
        self.dwi_unwarped.fullPath()
    ]
    context.system(*cmd)

    transformManager.copyReferential(self.dwi_data, self.dwi_unwarped)

    context.write('Finished')
コード例 #20
0
def execution( self, context ):
    configuration = Application().configuration
    tmp_directory = configuration.brainvisa.temporaryDirectory
    context.write(tmp_directory)

    # Dicom converter -> to nifti

    #if self.mricron_program=='dcm2niix':
    #    mricron = find_executable('dcm2niix')
       # if not mricron:
            #context.write('MRICRON dcm2nii program not found. Will use dcm2niix instead' )
            #mricron = find_executable('dcm2niix')
            #self.mricron_program = 'dcm2niix'
           # if not mricron:
                #raise RuntimeError(_t_('dcm2nii or dcm2niix executable NOT found !'))

    DicomToNifti.dicom_to_nifti(self.dwi_directory, self.mricron_program, context)
    #outputFiles = glob.glob(os.path.join(self.dwi_directory.fullPath(), '*.nii.gz'))
    context.write("OK")

    context.system( 'mv', glob.glob(os.path.join(self.dwi_directory.fullPath(), '*.nii.gz'))[0], tmp_directory + '/dwi.nii.gz' ) #data
    context.system( 'mv', glob.glob(os.path.join(self.dwi_directory.fullPath(), '*.bvec'))[0], tmp_directory + '/bvec.txt' ) #data
    context.system( 'mv', glob.glob(os.path.join(self.dwi_directory.fullPath(), '*.bval'))[0], tmp_directory + '/bval.txt' ) #data
    list_metadata = glob.glob(os.path.join(self.dwi_directory.fullPath(), '*.json'))
    context.write("OK1")
    if list_metadata:
        context.system('mv', glob.glob(os.path.join(self.dwi_directory.fullPath(), '*.json'))[0], tmp_directory + '/dwi_metadata.json')
    context.write("OK2")
    if self.additional_acquisition=="Fieldmap":
        DicomToNifti.dicom_to_nifti(self.fieldmap_directory, self.mricron_program, context)
        context.system( 'mv', glob.glob(os.path.join(self.fieldmap_directory.fullPath(), '*.nii.gz'))[0], tmp_directory + '/phase.nii.gz' ) #_e2phdata
        for f in glob.glob(os.path.join(self.fieldmap_directory.fullPath(), '*.nii.gz')):
            context.system( 'rm', f) #_e2data
        DicomToNifti.dicom_to_nifti(self.magnitude_directory, self.mricron_program, context)
        context.system( 'mv', glob.glob(os.path.join(self.magnitude_directory.fullPath(), '*.nii.gz'))[0], tmp_directory + '/mag.nii.gz' ) #data
        for f in glob.glob(os.path.join(self.magnitude_directory.fullPath(), '*.nii.gz')):
            context.system( 'rm', f) #_e2data
        context.write("OK3")
    elif self.additional_acquisition=="Blip-reversed images":
        DicomToNifti.dicom_to_nifti(self.blip_reversed_directory, self.mricron_program, context)
        context.system( 'mv', glob.glob(os.path.join(self.blip_reversed_directory.fullPath(), '*.nii.gz'))[0], tmp_directory + '/blip_reversed.nii.gz' ) #data
        list_metadata = glob.glob(os.path.join(self.blip_reversed_directory.fullPath(), '*.json'))
        if list_metadata:
            context.system( 'mv', glob.glob(os.path.join(self.blip_reversed_directory.fullPath(), '*.json'))[0], tmp_directory + '/blip_reversed_metadata.json' )
        context.write("OK4")
        #for f in glob.glob(os.path.join(self.magnitude_directory.fullPath(), '*')):
            #context.system('rm', f)  # _e2data
    context.write("OK5")
    # Import data
    if self.additional_acquisition=="None":
        context.runProcess( 'Import', dwi_data=tmp_directory + '/dwi.nii.gz', bvals=tmp_directory + '/bval.txt', bvecs=tmp_directory + '/bvec.txt', dwi_metadata=tmp_directory + '/dwi_metadata.json', additional_acquisition=self.additional_acquisition, output_dwi_data=self.output_dwi_data, output_bvals=self.output_bvals, output_bvecs=self.output_bvecs, output_dwi_metadata=self.output_dwi_metadata)
        context.write("OK6")
        #context.runProcess('Import', dwi_data=tmp_directory + '/dwi.nii.gz', bvals=tmp_directory + '/bval.txt', bvecs=tmp_directory + '/bvec.txt', additional_acquisition=self.additional_acquisition, output_dwi_data=self.output_dwi_data, output_bvals=self.output_bvals, output_bvecs=self.output_bvecs)

    if self.additional_acquisition=="Fieldmap":
        context.runProcess( 'Import', dwi_data=tmp_directory + '/dwi.nii.gz', bvals=tmp_directory + '/bval.txt', bvecs=tmp_directory + '/bvec.txt',dwi_metadata=tmp_directory + '/dwi_metadata.json', additional_acquisition=self.additional_acquisition, output_dwi_data=self.output_dwi_data, output_bvals=self.output_bvals, output_bvecs=self.output_bvecs, output_dwi_metadata=self.output_dwi_metadata, fieldmap=tmp_directory + '/phase.nii.gz', magnitude=tmp_directory + '/mag.nii.gz', output_fieldmap=self.output_fieldmap, output_magnitude=self.output_magnitude )
    if self.additional_acquisition=="Blip-reversed images":
        context.runProcess( 'Import', dwi_data=tmp_directory + '/dwi.nii.gz', bvals=tmp_directory + '/bval.txt', bvecs=tmp_directory + '/bvec.txt', dwi_metadata=tmp_directory + '/dwi_metadata.json', additional_acquisition=self.additional_acquisition, output_dwi_data=self.output_dwi_data, output_bvals=self.output_bvals, output_bvecs=self.output_bvecs,  output_dwi_metadata=self.output_dwi_metadata, blip_reversed_data=tmp_directory + '/blip_reversed.nii.gz', blip_reversed_metada=tmp_directory + '/blip_reversed_metadata.json', output_blip_reversed_data=self.output_blip_reversed_data, output_blip_reversed_metadata=self.output_blip_reversed_metadata)

    # Dicom header info
    files = os.listdir(self.dwi_directory.fullPath())
    file0 = files[0]
    header = dicom.read_file(self.dwi_directory.fullPath() + '/' + file0)
    print header
    manufact = header['0008','0070'].value
    acqMat = header.get('AcquisitionMatrix')
    # acqMat: Dimensions of the acquired frequency /phase data before reconstruction. Multi-valued: frequency rows\frequency columns\phase rows\phase columns
    if acqMat[0]==0 & acqMat[3]==0: # phase-encoding LR/RL
        PE = 'x axis or LR/RL'
        dimx = acqMat[2]
        dimy = acqMat[1]
        Nvox = dimx
    elif acqMat[1]==0 & acqMat[2]==0: # phase-encoding AP/PA
        PE = 'y axis or AP/PA'
        dimx = acqMat[0]
        dimy = acqMat[3]
        Nvox = dimy
    dimz = header['0019','100a'].value
    TR = header.get('RepetitionTime')
    TE = header.get('EchoTime')
    BdWpp = header['0019','1028'].value
    ESeff = 1/(BdWpp*Nvox)
    RT = 1/BdWpp
    context.write('Manufacturer: ' + manufact)
    context.write('TR = ' + str(TR))
    context.write('TE = ' + str(TE))
    context.write('BandwidthPerPixelPhaseEncode (Hz) = ' + str(BdWpp))
    context.write('Effective Echo Spacing (s) = ' + str(ESeff))
    context.write('Readout Time (s) = ' + str(RT))
    context.write('Matrix Size (voxels) = ' + str(dimx) + ' x ' + str(dimy) + ' x ' + str(dimz))
    context.write('Phase-encoding direction along ' + PE)
コード例 #21
0
from brainvisa.processes import *
from soma.wip.application.api import Application
from distutils.spawn import find_executable
from soma import aims
import os
import nibabel

configuration = Application().configuration


def defaultBrainExtraction(data_path, bet_output, f='0.3'):
    """  brain extraction using FSL-bet function, with recursive searching of image center """

    data = nibabel.load(data_path).get_data()
    cmd = ' '.join([
        configuration.FSL.fsl_commands_prefix + 'bet ', data_path, bet_output,
        ' -R -m -f ', f
    ])
    os.system(cmd)

    return 0


def interactiveBrainExtraction(context, data_path, bet_output, f='0.3'):
    """ Iterative and interactive brain extraction using FSL-bet function """

    cmds = ['fsleyes', 'fslview']
    viewers = [
        find_executable(configuration.FSL.fsl_commands_prefix + cmd)
        for cmd in cmds
    ]
コード例 #22
0
def execution(self, context):

    configuration = Application().configuration
    transformManager = getTransformationManager()
    niftyreg_f3d = find_executable('reg_f3d')
    niftyreg_resample = find_executable('reg_resample')
    niftyreg_transform = find_executable('reg_transform')

    context.write('Fractional anisotropy temporary estimation')
    dtifit = context.temporary('File')
    mask = context.temporary('File')
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'bet',
        self.b0_volume.fullPath(),
        mask.fullPath(), '-f', '0.3', '-m'
    ]
    context.system(*cmd)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'dtifit', '-k',
        self.dwi_data.fullPath(), '-o',
        dtifit.fullPath(), '-m',
        mask.fullPath() + '_mask.nii.gz', '-r',
        self.bvecs.fullPath(), '-b',
        self.bvals.fullPath()
    ]
    context.system(*cmd)
    FA = dtifit.fullPath() + '_FA.nii.gz'

    context.write('Affine pre-alignment')
    diff_to_t1_xfm = context.temporary('File')  #'/tmp/diff_to_t1_xfm' #
    reg = context.temporary('File')  #'/tmp/reg' #
    t1_brain = context.temporary('NIFTI-1 image')
    context.system('AimsMask', '-i', self.T1_volume, '-m',
                   self.T1_mask.fullPath(), '-o', t1_brain.fullPath())
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-ref',
        t1_brain.fullPath(), '-in', FA, '-omat',
        diff_to_t1_xfm.fullPath() + '_init.mat', '-out',
        reg.fullPath() + '_FA_to_t1_affine.nii.gz'
    ]
    context.system(*cmd)
    #diff_to_t1_xfm.fullPath() is an affine 4X4 matrix
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'flirt', '-ref',
        t1_brain.fullPath(), '-in',
        self.b0_volume.fullPath(), '-applyxfm', '-init',
        diff_to_t1_xfm.fullPath() + '_init.mat', '-out',
        reg.fullPath() + '_b0_to_t1_affine.nii.gz'
    ]
    context.system(*cmd)
    #register the bo into the T1 space using affine transformation

    tmp_file = context.temporary('gz compressed NIFTI-1 image')

    context.write('Non linear registration')
    cmd = [
        niftyreg_f3d, '-ref',
        self.T1_volume.fullPath(), '-flo',
        reg.fullPath() + '_FA_to_t1_affine.nii.gz', '-sym', '-cpp',
        diff_to_t1_xfm.fullPath() + '_cpp.nii', '-res',
        reg.fullPath() + '_FA_to_t1_nonlinear.nii.gz'
    ]
    context.system(*cmd)
    cmd = [
        niftyreg_resample, '-ref',
        self.T1_volume.fullPath(), '-flo',
        reg.fullPath() + '_b0_to_t1_affine.nii.gz', '-trans',
        diff_to_t1_xfm.fullPath() + '_cpp.nii', '-res',
        tmp_file.fullPath()
    ]
    context.system(*cmd)
    ref = self.T1_volume.get('storage_to_memory', search_header=True)
    context.system('AimsFileConvert', '-i', tmp_file.fullPath(), '-o',
                   self.b0_to_T1.fullPath(), '--orient',
                   '"abs: ' + ' '.join(map(str, ref)) + '"')
    transformManager.copyReferential(self.T1_volume, self.b0_to_T1)

    context.write('Invert transformation...')
    cmd = [
        niftyreg_transform, '-ref',
        self.T1_volume.fullPath(), '-def',
        diff_to_t1_xfm.fullPath() + '_cpp.nii',
        self.diff_to_T1_nonlinear_dfm.fullPath()
    ]
    context.system(*cmd)
    cmd = [
        niftyreg_transform, '-ref',
        self.T1_volume.fullPath(), '-def',
        diff_to_t1_xfm.fullPath() + '_cpp_backward.nii',
        self.T1_to_diff_nonlinear_dfm.fullPath()
    ]  #reg.fullPath()+'_FA_to_t1_affine.nii.gz'
    context.system(*cmd)
    # cmd = [configuration.FSL.fsl_commands_prefix + 'convert_xfm', '-omat', diff_to_t1_xfm.fullPath() + '_init_inv.mat', '-inverse', diff_to_t1_xfm.fullPath() + '_init.mat']
    # context.system(*cmd)
    context.write(
        'Conversion from .mat to .trm'
    )  # Non applicable to non-linear warp image. To compute only for anatomist to load files in the same referential
    trm = fslTransformation.fslMatToTrm(
        diff_to_t1_xfm.fullPath() + '_init.mat', self.b0_volume.fullPath(),
        self.b0_to_T1.fullPath())
    aims.write(trm, self.diff_to_T1_linear_xfm.fullPath())
    cmd = [
        'AimsInvertTransformation', '-i', self.diff_to_T1_linear_xfm, '-o',
        self.T1_to_diff_linear_xfm
    ]
    context.system(*cmd)

    context.write('Registration of T1 to DWI space...')
    cmd = [
        niftyreg_resample, '-ref',
        self.T1_volume.fullPath(), '-flo',
        self.T1_volume.fullPath(), '-trans',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '-res',
        tmp_file.fullPath()
    ]  #reg.fullPath()+'_FA_to_t1_affine.nii.gz'
    context.system(*cmd)
    cmd = [
        'AimsResample', '-i', tmp_file, '-m', self.T1_to_diff_linear_xfm, '-t',
        self.T1_to_b0_interpolation, '-o', self.T1_to_b0
    ]
    if self.T1_to_b0_resampling == True:
        cmd += ['-r', self.b0_volume]
    elif self.T1_to_b0_resampling == False:
        dim = self.b0_volume.get('volume_dimension', search_header=True)
        vox_ref = self.b0_volume.get('voxel_size', search_header=True)
        vox_in = self.T1_volume.get('voxel_size', search_header=True)
        cmd += [
            '--dx',
            str(int(dim[0] * vox_ref[0] / vox_in[0]) + 1), '--dy',
            str(int(dim[1] * vox_ref[1] / vox_in[1]) + 1), '--dz',
            str(int(dim[2] * vox_ref[2] / vox_in[2]) + 1)
        ]
    context.system(*cmd)
    ref = self.b0_volume.get('storage_to_memory', search_header=True)
    os.system(' '.join([
        'AimsFileConvert', '-i',
        self.T1_to_b0.fullPath(), '-o',
        self.T1_to_b0.fullPath(), '--orient',
        '"abs: ' + ' '.join(map(str, ref)) + '"'
    ]))
    transformManager.copyReferential(self.b0_volume, self.T1_to_b0)

    context.write('Registration of T1 brain mask to DWI space...')
    cmd = [
        niftyreg_resample, '-ref',
        self.T1_volume.fullPath(), '-flo',
        self.T1_mask.fullPath(), '-trans',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '-res',
        tmp_file.fullPath()
    ]  #reg.fullPath()+'_FA_to_t1_affine.nii.gz'
    context.system(*cmd)
    cmd = [
        'AimsResample', '-i', tmp_file, '-m', self.T1_to_diff_linear_xfm, '-t',
        self.T1_to_b0_interpolation, '-o', self.T1_to_b0_mask, '-r',
        self.b0_volume
    ]
    context.system(*cmd)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_mask, '-o', self.T1_to_b0_mask,
        '-t', '1', '-b', '--fg', '1'
    ]
    context.system(*cmd)
    os.system(' '.join([
        'AimsFileConvert', '-i',
        self.T1_to_b0_mask.fullPath(), '-o',
        self.T1_to_b0_mask.fullPath(), '--orient',
        '"abs: ' + ' '.join(map(str, ref)) + '"'
    ]))
    transformManager.copyReferential(self.dwi_data, self.T1_to_b0_mask)

    context.write('Recompile left-right grey-matter and white-matter...')
    Left = aims.read(self.T1_grey_white_left.fullPath())
    Right = aims.read(self.T1_grey_white_right.fullPath())
    Left_Right = Left + Right
    GM = Left.arraydata()
    GM[:, :, :, :] = 0
    GM[numpy.where(Left_Right.arraydata() == 100)] = 100
    WM = Right.arraydata()
    WM[:, :, :, :] = 0
    WM[numpy.where(Left_Right.arraydata() == 200)] = 100
    GM_vol = aims.Volume(GM)
    WM_vol = aims.Volume(WM)
    GM_vol.copyHeaderFrom(Left.header())
    WM_vol.copyHeaderFrom(Left.header())
    GM_file = context.temporary('NIFTI-1 image')
    WM_file = context.temporary('NIFTI-1 image')
    aims.write(GM_vol, GM_file.fullPath())
    aims.write(WM_vol, WM_file.fullPath())

    context.write(
        'Registration of white-matter and grey-matter masks to DWI space...')
    cmd = [
        niftyreg_resample, '-ref',
        self.T1_volume.fullPath(), '-flo',
        GM_file.fullPath(), '-trans',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '-res',
        tmp_file.fullPath(), '-inter', 0
    ]  #reg.fullPath()+'_FA_to_t1_affine.nii.gz'
    context.system(*cmd)
    cmd = [
        'AimsResample', '-i', tmp_file, '-m', self.T1_to_diff_linear_xfm, '-t',
        '0', '-o', self.T1_to_b0_GM, '-d', '1', '-r', self.b0_volume
    ]
    context.system(*cmd)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_GM, '-o', self.T1_to_b0_GM, '-t',
        '50', '-b', '--fg', '1'
    ]
    context.system(*cmd)
    os.system(' '.join([
        'AimsFileConvert', '-i',
        self.T1_to_b0_GM.fullPath(), '-o',
        self.T1_to_b0_GM.fullPath(), '--orient',
        '"abs: ' + ' '.join(map(str, ref)) + '"'
    ]))
    transformManager.copyReferential(self.dwi_data, self.T1_to_b0_GM)
    cmd = [
        niftyreg_resample, '-ref',
        self.T1_volume.fullPath(), '-flo',
        WM_file.fullPath(), '-trans',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '-res',
        tmp_file.fullPath(), '-inter', '0'
    ]  #reg.fullPath()+'_FA_to_t1_affine.nii.gz'
    context.system(*cmd)
    cmd = [
        'AimsResample', '-i', tmp_file, '-m', self.T1_to_diff_linear_xfm, '-t',
        '0', '-o', self.T1_to_b0_WM, '-d', '1', '-r', self.b0_volume
    ]
    # cmd = [configuration.FSL.fsl_commands_prefix + 'fslmaths', self.T1_to_b0_WM.fullPath(), '-thr', '50', '-bin', self.T1_to_b0_WM.fullPath()]
    context.system(*cmd)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_WM, '-o', self.T1_to_b0_WM, '-t',
        '50', '-b', '--fg', '1'
    ]
    context.system(*cmd)
    os.system(' '.join([
        'AimsFileConvert', '-i',
        self.T1_to_b0_WM.fullPath(), '-o',
        self.T1_to_b0_WM.fullPath(), '--orient',
        '"abs: ' + ' '.join(map(str, ref)) + '"'
    ]))
    transformManager.copyReferential(self.dwi_data, self.T1_to_b0_WM)

    context.write('Recompile T1 left-right skeletons...')
    Left = aims.read(self.T1_skeleton_left.fullPath())
    Right = aims.read(self.T1_skeleton_right.fullPath())
    Lskeleton = Left.arraydata()
    Rskeleton = Right.arraydata()
    Lskeleton[Lskeleton < 20] = 0
    Lskeleton[Lskeleton > 20] = 1
    Rskeleton[Rskeleton < 20] = 0
    Rskeleton[Rskeleton > 20] = 1
    Lskeleton_vol = aims.Volume(Lskeleton)
    Rskeleton_vol = aims.Volume(Rskeleton)
    skeleton = Lskeleton_vol + Rskeleton_vol
    skeleton.copyHeaderFrom(Left.header())
    skeleton_file = context.temporary('NIFTI-1 image')
    aims.write(skeleton, skeleton_file.fullPath())

    context.write('Registration of T1 skeleton mask to DWI space...')
    cmd = [
        niftyreg_resample, '-ref',
        self.T1_volume.fullPath(), '-flo',
        skeleton_file.fullPath(), '-trans',
        self.T1_to_diff_nonlinear_dfm.fullPath(), '-res',
        tmp_file.fullPath()
    ]  #reg.fullPath()+'_FA_to_t1_affine.nii.gz'
    context.system(*cmd)
    cmd = [
        'AimsResample', '-i', tmp_file, '-m', self.T1_to_diff_linear_xfm, '-t',
        '0', '-o', self.T1_to_b0_skeleton, '-r', self.b0_volume
    ]
    context.system(*cmd)
    cmd = [
        'AimsThreshold', '-i', self.T1_to_b0_skeleton, '-o',
        self.T1_to_b0_skeleton, '-m', 'gt', '-t', '0', '-b', '--fg', '1'
    ]
    context.system(*cmd)
    cmd = [
        'AimsMask', '-i', self.T1_to_b0_skeleton, '-o', self.T1_to_b0_skeleton,
        '-m', self.T1_to_b0_WM, '--inv', 'True'
    ]
    context.system(*cmd)
    os.system(' '.join([
        'AimsFileConvert', '-i',
        self.T1_to_b0_skeleton.fullPath(), '-o',
        self.T1_to_b0_skeleton.fullPath(), '--orient',
        '"abs: ' + ' '.join(map(str, ref)) + '"'
    ]))
    transformManager.copyReferential(self.dwi_data, self.T1_to_b0_skeleton)
    context.write('Finished')
コード例 #23
0
def execution(self, context):
    configuration = Application().configuration

    img = aims.read(self.dwi_data.fullPath())
    dwi_data = img.arraydata()
    bvals = numpy.loadtxt(self.bvals.fullPath())
    b0_index = numpy.where(bvals < 100)[
        0]  ## bvals==0 not possible when bvalues take values +-5 or +-10

    if self.data_are_distortion_corrected:
        ## Average of all b0 volumes (after affine registration done by eddy-current correction)
        context.write('Average of all b0 volumes')
        b0_sum = dwi_data[b0_index[0], :, :, :]
        for ind in b0_index[1:]:
            b0_sum = b0_sum + dwi_data[ind, :, :, :]
        b0_sum = b0_sum / len(b0_index)
    else:
        ## Affine alignment and average of all b0 volumes
        refvol = context.temporary('NIFTI-1 image')
        invol = context.temporary('NIFTI-1 image')
        outvol = context.temporary('NIFTI-1 image')
        context.write('Extraction of first b0 volume')
        cmd = [
            configuration.FSL.fsl_commands_prefix + 'fslroi',
            self.dwi_data.fullPath(),
            refvol.fullPath(),
            str(b0_index[0]), '1'
        ]
        context.system(*cmd)
        b0_sum = dwi_data[b0_index[0], :, :, :]
        context.write(
            'Affine co-registration of all b0 volumes to the first one...')
        for ind in b0_index[1:]:
            cmd = [
                configuration.FSL.fsl_commands_prefix + 'fslroi',
                self.dwi_data.fullPath(),
                invol.fullPath(),
                str(ind), '1'
            ]
            context.system(*cmd)
            cmd = [
                configuration.FSL.fsl_commands_prefix + 'flirt', '-interp',
                'spline', '-cost', 'mutualinfo', '-in',
                invol.fullPath(), '-ref',
                refvol.fullPath(), '-out',
                outvol.fullPath()
            ]
            context.system(*cmd)
            b0_reg = aims.read(outvol.fullPath())
            b0_reg_data = b0_reg.arraydata()
            b0_sum = b0_sum + b0_reg_data
        b0_sum = b0_sum / len(b0_index)
    # b0_sum = dwi_data[b0_index[0], :, :, :]

    b0_vol = aims.Volume(b0_sum)
    b0_vol.copyHeaderFrom(img.header())
    aims.write(b0_vol, self.b0_volume.fullPath())

    transformManager = getTransformationManager()
    transformManager.copyReferential(self.dwi_data, self.b0_volume)

    context.write('Finished')
コード例 #24
0
def execution(self, context):

    ## Validation
    bvals = numpy.loadtxt(self.bvals.fullPath())
    a = numpy.array(bvals) / 100
    b = numpy.round(a)
    c = numpy.unique(b)
    d = c[c != 0] * 100
    Nshell = len(d)
    if Nshell > 1:
        context.write('Multi-shell acquisition with ',
                      str(Nshell) + ' shells: b=' + str(d.astype(int)))
        raise RuntimeError(
            _t_('Global Tractograhy is NOT YET COMPATIBLE with multishell acquisitions ! Please modify your data accordingly.'
                ))
    elif Nshell == 1:
        bvalue = d[0].astype(int)

    configuration = Application().configuration
    spm = configuration.SPM.spm8_path
    matlab_exe = configuration.matlab.executable
    tractoScriptPath = fibertool.define_toolpath()
    transformManager = getTransformationManager()
    tempDir = configuration.brainvisa.temporaryDirectory
    timesec = str(int(time.time() * 1000))

    MITK_bvecs = tempDir + '/MITK_bvecs.txt'  #context.temporary('Text file') #
    MITK_mask = tempDir + '/MITK_mask'  #context.temporary('File')
    # MITK_raw_data = tempDir + '/MITK_raw_data.mat' #context.temporary('Matlab File')
    # MITK_hardi_data = tempDir + '/MITK_hardi_data.mat' #context.temporary('Matlab File')
    MITK_tract_data = tempDir + '/MITK_tract_data_' + self.reconstruction_density + '.mat'  #context.temporary('Matlab File')

    context.write("Reorganize bvecs according to MITK convention")
    # orientation: Xnew=-Y Ynew=X Znew=Z
    # b0 at the begining
    # array of shape (Nvol, 3)
    vecs = numpy.loadtxt(self.bvecs.fullPath())
    vecs[[0, 1]] = vecs[[1, 0]]
    vecs[0] = -vecs[0]
    vals = numpy.loadtxt(self.bvals.fullPath())
    b0 = numpy.where(vals < 100)[0]
    nb0 = len(b0)
    step = 0
    vecs_reorganized = numpy.copy(vecs)
    for i in range(len(vals)):
        if vals[i] < 100:
            vecs_reorganized[:, step] = vecs[:, i]
            step += 1
        else:
            vecs_reorganized[:, len(b0) + i - step] = vecs[:, i]
    new_vecs = vecs_reorganized.T
    numpy.savetxt(MITK_bvecs, new_vecs, fmt='%6f')

    context.write("Split and unzip the input 4D volume into 3D volumes")
    splitpath = tempDir + '/split_volumes_' + timesec
    if os.path.exists(splitpath):
        shutil.rmtree(splitpath)
    os.makedirs(splitpath)
    cmd = [
        configuration.FSL.fsl_commands_prefix + 'fslsplit',
        self.dwi_data.fullPath(), splitpath + '/vol_', '-t'
    ]
    context.system(*cmd)
    os.system('gunzip {0}/*'.format(splitpath))
    os.system('cp ' + self.binary_mask.fullPath() + ' ' + MITK_mask +
              '.nii.gz')
    os.system('gunzip -f ' + MITK_mask + '.nii.gz')

    context.write('Convert data to matlab structure')
    matfilepath = tempDir + '/fibertool_main' + timesec
    matfile = file(matfilepath + '.m', 'w')
    matfile.write("addpath(genpath('%s'));\n" % (tractoScriptPath))
    matfile.write("addpath(genpath('%s/release'));\n" %
                  (self.tractographyPackage.fullPath()))
    matfile.write("addpath('%s');\n" % spm)
    matfile.write("fibertool_importData('%s/', '%s', '%s.nii', '%s')\n" %
                  (splitpath, self.bvals.fullPath(), MITK_mask, tempDir))
    matfile.write("exit\n")
    matfile.close()
    os.system(matlab_exe + ' -nodisplay -r "run %s.m"' % matfilepath)  #
    os.system('rm ' + matfilepath + '.m')

    context.write("Compute HARDI model and matlab structure")
    # WARNING: in calcutate_dti.m, if bvecs of b0 volumes are not equal to [0, 0, 0], then the script adds null vectors to the DE scheme artificially !
    # So size of tables are no longer equivalent. Note: It probably needs only indices in the table so it's not necessary to force them null. Actually there is even no need to reorder the bvec with b0 at the begining...
    # This issue is taken into account in our process
    computeDT = '0'
    matfilepath = tempDir + '/fibertool_hardi' + timesec
    matfile = file(matfilepath + '.m', 'w')
    matfile.write("addpath(genpath('%s'));\n" % (tractoScriptPath))
    matfile.write("addpath(genpath('%s/release'));\n" %
                  (self.tractographyPackage.fullPath()))
    matfile.write(
        "addpath('%s');\n" % spm
    )  # Fibertool is not compatible with SPM12. Need to change path in Matlab to use SPM8
    matfile.write("fibertool_computeHardi('%s', '%s', '%s', '%s', '%s')\n" %
                  (tempDir, str(bvalue), MITK_bvecs, str(nb0), computeDT))
    matfile.write("exit\n")
    matfile.close()
    os.system(matlab_exe + ' -nodisplay -r "run %s.m"' % matfilepath)  #
    os.system('rm ' + matfilepath + '.m')

    context.write("Global fiber tracking")
    threshold = '0'
    matfilepath = tempDir + '/fibertool_tracking' + timesec
    matfile = file(matfilepath + '.m', 'w')
    matfile.write("addpath(genpath('%s'));\n" % (tractoScriptPath))
    matfile.write("addpath(genpath('%s/release'));\n" %
                  (self.tractographyPackage.fullPath()))
    matfile.write("addpath('%s');\n" % spm)
    matfile.write("fibertool_globalTracking('%s', '%s', '%s')\n" %
                  (tempDir, threshold, self.reconstruction_density))
    matfile.write("exit\n")
    matfile.close()
    os.system(matlab_exe + ' -nodisplay -r "run %s.m"' % matfilepath)  #
    os.system('rm ' + matfilepath + '.m')

    context.write('Convert .mat into .trk format')
    mask_img = nibabel.load(self.binary_mask.fullPath())
    mask = mask_img.get_data()
    print(mask.shape)
    mask_affine = mask_img.get_affine()
    if self.data_source == "HCP":
        affine = numpy.array([[1, 0, 0, 34], [0, -1, 0, 144 - 29],
                              [0, 0, 1, -23], [0, 0, 0, 1]])
    elif self.data_source == "CerimedMRI":
        affine = numpy.array([[1, 0, 0, 47], [0, 1, 0, -48], [0, 0, 1, -30],
                              [0, 0, 0, 1]])  ## To be set
    else:
        affine = numpy.eye(4)
    voxel_size = mask_img.header['pixdim'][1:4]
    scaling = numpy.array(
        [[0, voxel_size[0], 0, 0],
         [-voxel_size[1], 0, 0, voxel_size[1] * (mask.shape[1])],
         [0, 0, voxel_size[2], 0], [0, 0, 0, 1]])
    inStruct = scipy.io.loadmat(MITK_tract_data)
    context.write('tracks loaded')
    context.write(str(inStruct['curveSegCell'].shape[0]) + ' fibers detected')
    sl = []
    for s in inStruct['curveSegCell']:
        s = s[0]
        s = nibabel.affines.apply_affine(affine, s)
        s = nibabel.affines.apply_affine(scaling, s)
        sl.append(s)
    save_trk(self.streamlines.fullPath(), sl, numpy.eye(4), mask.shape)
    context.write('tractogram saved !')

    context.write('Create density map')
    translation = [[1, 0, 0, 0], [0, 1, 0, -1], [0, 0, 1, -1], [0, 0, 0, 1]]
    sl = []
    for s in inStruct['curveSegCell']:
        s = s[0]
        s = nibabel.affines.apply_affine(translation, s)
        s = nibabel.affines.apply_affine(
            scaling, s
        )  # scaling pas obligatoire seulement reorient => affine=np.eye(4) pour density map
        sl.append(s)
    dm = utils.density_map(
        sl,
        mask.shape,
        affine=numpy.diag([voxel_size[0], voxel_size[1], voxel_size[2], 1]))
    nibabel.save(nibabel.Nifti1Image(dm.astype(numpy.float32), mask_affine),
                 self.density_map.fullPath())
    context.write('density map saved !')
コード例 #25
0
def execution(self, context):

    context.write('Distortion correction using blip-reversed images')
    configuration = Application().configuration
    fsldir = configuration.FSL.fsldir
    FSL_topup_directory = os.path.dirname(self.topup_b0_volumes.fullPath())
    tmp_directory = configuration.brainvisa.temporaryDirectory

    context.write('- Reading data')
    up_img = aims.read(self.dwi_data.fullPath())
    up_data = up_img.arraydata()
    up_bvals = numpy.loadtxt(self.bvals.fullPath())
    up_bvecs = numpy.loadtxt(self.bvecs.fullPath())
    context.write(up_bvals.shape)
    context.write(up_bvecs.shape)
    down_img = aims.read(self.blip_reversed_data.fullPath())
    down_data = down_img.arraydata()
    Nvol_up = self.dwi_data.get('volume_dimension', search_header=True)[3]
    Nvol_down = self.blip_reversed_data.get('volume_dimension',
                                            search_header=True)[3]
    if Nvol_up == Nvol_down:
        blip_down_scheme = 'full_sequence'
        context.write(
            'Full acquisition with opposite phase-encode direction DETECTED')
    else:
        blip_down_scheme = 'b0_volumes_only'
        context.write(
            'Only b0 volumes with opposite phase-encode direction DETECTED')
    #
    # context.write('- Correcting number of slices')
    # dimx = self.dwi_data.get( 'volume_dimension', search_header=True )[0]
    # dimy = self.dwi_data.get( 'volume_dimension', search_header=True )[1]
    # dimz = self.dwi_data.get( 'volume_dimension', search_header=True )[2]
    # if dimz % 2 != 0:
    #    context.write('ODD number of slices')
    #    up_data = up_data[:,1:,:,:]
    #    down_data = down_data[:,1:,:,:]
    #    dimz = dimz -1
    #
    # context.write('- b0 volumes extraction')
    # up_b0_index = numpy.where(up_bvals < 50)[0] ## bvals==0 not possible when bvalues take values +-5 or +-10
    # ##    if len(up_b0_index)>3:
    # ##        up_b0_index=up_b0_index[::2]
    # up_b0 = up_data[up_b0_index, :, :, :]
    # if blip_down_scheme == 'b0_volumes_only':
    #    down_bvals = numpy.zeros((1, Nvol_down))+up_bvals[up_b0_index[0]]
    #    down_bvals = down_bvals[0]
    #    down_b0_index = numpy.arange(Nvol_down)
    #    down_bvecs = numpy.zeros((3, Nvol_down))+up_bvecs[:,up_b0_index[0]].reshape((3,1))
    # else:
    #    down_bvals = up_bvals
    #    down_b0_index = up_b0_index
    #    down_bvecs = up_bvecs
    #
    # down_b0 = down_data[down_b0_index, :, :, :]
    #
    # context.write('- Merging blip-up and blip-down b0 images')
    # up_down_b0 = numpy.concatenate((up_b0, down_b0))
    # up_down_b0_vol = aims.Volume(up_down_b0)
    # up_down_b0_vol.copyHeaderFrom(up_img.header())
    # aims.write(up_down_b0_vol, self.topup_b0_volumes.fullPath())
    #
    # if self.b0_bias_correction:
    #    context.write('- Intensity bias correction of b0 images')
    #    biais_corrected_img = context.temporary('gz compressed NIFTI-1 image' )
    #    sec = int(time.time())
    #    for i in range(len(up_b0_index)+len(down_b0_index)):
    #        context.write('volume '+str(i))
    #        context.system( configuration.FSL.fsl_commands_prefix + 'fslroi', self.topup_b0_volumes.fullPath(), tmp_directory+'/bias_img_'+str(sec)+'.nii.gz', str(i), '1' )
    #        context.system( configuration.FSL.fsl_commands_prefix + 'fsl_anat', '--noreorient', '--nocrop', '--noreg', '--nononlinreg', '--noseg', '--nosubcortseg', '-t', 'T2', '-i', tmp_directory+'/bias_img_'+str(sec)+'.nii.gz')
    #        if i==0:
    #            context.system( 'cp', tmp_directory + '/bias_img_'+str(sec)+'.anat/T2_biascorr.nii.gz', biais_corrected_img.fullPath())
    #        else:
    #            context.system( configuration.FSL.fsl_commands_prefix + 'fslmerge', '-t', biais_corrected_img.fullPath(), biais_corrected_img.fullPath(), tmp_directory + '/bias_img_'+str(sec)+'.anat/T2_biascorr.nii.gz')
    #        context.system( 'rm', '-r', tmp_directory + '/bias_img_'+str(sec)+'.anat/' )
    #    context.system( 'mv', biais_corrected_img.fullPath(), self.topup_b0_volumes.fullPath())
    #
    # context.write('- Merging blip-up and blip-down dwi images')
    # ##    context.system( configuration.FSL.fsl_commands_prefix + 'fslmerge', '-t', self.topup_data.fullPath(), self.dwi_data.fullPath(), self.blip_reversed_data.fullPath() )
    # up_down_data = numpy.concatenate((up_data, down_data))
    # up_down_data_vol = aims.Volume(up_down_data)
    # up_down_data_vol.copyHeaderFrom(up_img.header())
    # aims.write(up_down_data_vol, self.topup_data.fullPath())
    # context.write('- Merging bvals and bvecs')
    # up_down_bvals = numpy.concatenate((up_bvals, down_bvals), axis=0)
    # up_down_bvals = up_down_bvals.reshape((1,len(up_down_bvals)))
    # numpy.savetxt(self.topup_bvals.fullPath(), up_down_bvals, fmt='%d')
    # up_down_bvecs = numpy.concatenate((up_bvecs, down_bvecs), axis=1)
    # up_down_bvecs = up_down_bvecs
    # numpy.savetxt(self.topup_bvecs.fullPath(), up_down_bvecs, fmt='%.15f')
    #
    # context.write('- Setting acquisition parameters')
    # PE_parameters = self.topup_parameters.fullPath()
    # PE_index = self.topup_index.fullPath()
    # f_param = open(PE_parameters, 'w')
    # f_index = open(PE_index, 'w')
    # PE_list = ["AP", "PA", "LR", "RL"]
    # vector_list_up = ['0 1 0 ', '0 -1 0 ', '1 0 0 ', '-1 0 0 ']
    # vector_list_down = ['0 -1 0 ', '0 1 0 ', '-1 0 0 ', '1 0 0 ']
    # indx = PE_list.index(self.phase_encoding_direction)
    # [f_param.write(vector_list_up[indx] + str(self.readout_time) + '\n') for i in range(len(up_b0_index))]
    # [f_param.write(vector_list_down[indx] + str(self.readout_time) + '\n') for i in range(len(down_b0_index))]
    # val=1
    # for i in range(len(up_data)+len(down_data)):
    #    if i in up_b0_index[1:] or i in down_b0_index+len(up_bvals):
    #        val+=1
    #    f_index.write(str(val)+' ')
    # f_param.close()
    # f_index.close()
    #
    # context.write('- Estimation of the susceptibility off-resonance field...')
    # topup_config = fsldir + '/etc/flirtsch/b02b0.cnf'
    # cmd = [ configuration.FSL.fsl_commands_prefix + 'topup', '--imain=' + self.topup_b0_volumes.fullPath(), '--datain=' + self.topup_parameters.fullPath(), '--config=' + topup_config, '--out=' + FSL_topup_directory+ '/topup', '--iout=' + self.topup_b0_volumes_unwarped.fullPath(), '--verbose' ]
    # context.system( *cmd )
    #
    # context.write('- Apply fieldcoeff to b0 volumes')
    # up_b01 = context.temporary('gz compressed NIFTI-1 image' )
    # down_b01 = context.temporary('gz compressed NIFTI-1 image' )
    # up_b01_vol = aims.Volume(up_b0[0,:,:,:])
    # up_b01_vol.copyHeaderFrom(up_img.header())
    # aims.write(up_b01_vol, up_b01.fullPath())
    # down_b01_vol = aims.Volume(down_b0[0,:,:,:])
    # down_b01_vol.copyHeaderFrom(down_img.header())
    # aims.write(down_b01_vol, down_b01.fullPath())
    # cmd = [ configuration.FSL.fsl_commands_prefix + 'applytopup', '--imain=' + up_b01.fullPath() + ',' + down_b01.fullPath(), '--inindex='+ '1' + ',' + str(len(up_b0_index)+1), '--datain=' + self.topup_parameters.fullPath(), '--topup=' + FSL_topup_directory + '/topup', '--out=' + self.topup_b0_mean.fullPath()]
    # context.system( *cmd )
    # BrainExtraction.defaultBrainExtraction(self.topup_b0_mean.fullPath(), self.topup_b0_mean_brain.fullPath(), f=str(self.brain_extraction_factor))

    context.write(
        '- Eddy current estimation and correction... [can take several hours]')
    #memoryUse = 2*8*(len(up_data)+len(down_data))*dimx*dimy*dimz/1000000
    #context.write('Estimated memory usage: '+str(memoryUse)+' MB')

    # if oldORnew == "old":
    #    context.write('INFO: FSL version is anterior to 5.0.9')
    #    eddyExec = fsldir + '/bin/eddy.gpu'
    # else:
    #    context.write('INFO: FSL version is 5.0.9 or newer')
    #    eddyExec = fsldir + '/bin/eddy_cuda'
    eddyExec = find_executable('eddy_openmp')
    if eddyExec:
        context.write('CPU-multithread version of eddy found')
    else:
        context.write('CPU/GPU-multithread version of eddy NOT found')
        eddyExec = find_executable('eddy')
    #else:
    #eddyExec = fsldir + '/bin/eddy.gpu'
    #if os.path.isfile(eddyExec) == True:
    # context.write('GPU-multithread version of eddy found')
    #else:
    # eddyExec = fsldir + '/bin/eddy_cuda'
    #if os.path.isfile(eddyExec) == True:
    # context.write('GPU-multithread version of eddy found')
    #else:
    #   context.write('CPU/GPU-multithread version of eddy NOT found')
    #  eddyExec = fsldir + '/bin/eddy'

    ## default parameters for eddy
    #--fep # Fill Empty Planes by duplication or interpolation, can occur depending on scanner
    #--dont_peas # Post-Eddy-Alignment of Shell. To use only if single shell acquisition
    #--data_is_shelled # To use only if multi-shell, to force uncheck in case of special acquisition with "mini-shell" (a few dir with low bval)
    #--dont_sep_offs_move # should not be used
    #--interp = "spline" # interpolation model used during estimation phase and final resampling, use default
    #--ff = "10" # cannot be higher than default 10, safe value
    if self.entire_sphere_sampling == False or Nvol_up < 60:
        slm = "linear"
    else:
        slm = "none"
    if blip_down_scheme == 'b0_volumes_only':
        resamp = "jac"
    else:
        resamp = "lsr"
    cmd1 = '. ' + fsldir + '/etc/fslconf/fsl.sh'
    cmd2 = eddyExec + ' --imain=' + self.topup_data.fullPath(
    ) + ' --mask=' + self.topup_b0_mean_brain_mask.fullPath(
    ) + ' --acqp=' + self.topup_parameters.fullPath(
    ) + ' --index=' + self.topup_index.fullPath(
    ) + ' --bvecs=' + self.topup_bvecs.fullPath(
    ) + ' --bvals=' + self.topup_bvals.fullPath(
    ) + ' --topup=' + FSL_topup_directory + '/topup' + ' --out=' + FSL_topup_directory + '/topup_eddy'
    cmd2 += ' --flm=' + str(self.flm) + ' --slm=' + slm + ' --fwhm=' + str(
        self.fwhm) + ',0,0,0,0' + ' --niter=' + str(
            self.niter
        ) + ' --fep --interp=spline --resamp=' + resamp + ' --nvoxhp=' + str(
            self.nvoxhp) + ' --ff=10 --very_verbose'
    if not self.multi_shell:
        cmd2 += " --dont_peas"
    else:
        cmd2 += " --data_is_shelled"  # option does NOT exist
    cmd = cmd1 + ' ; ' + cmd2
    os.system(cmd)

    context.write('- Save corrected images and bvecs')
    context.system(
        configuration.FSL.fsl_commands_prefix + 'fslmaths',
        FSL_topup_directory + '/topup_eddy.nii.gz', '-abs', '-uthr', '65535',
        FSL_topup_directory + '/topup_eddy.nii.gz'
    )  # manage pb of type FLOAT and negative values become infinite values, data from Centre IRMf are in U16 [0,65535]
    context.write('threshold')
    if blip_down_scheme == 'b0_volumes_only':
        context.system(configuration.FSL.fsl_commands_prefix + 'fslroi',
                       FSL_topup_directory + '/topup_eddy.nii.gz',
                       self.dwi_unwarped.fullPath(), 0, str(len(up_bvals)))
    else:
        context.system('cp', FSL_topup_directory + '/topup_eddy.nii.gz',
                       self.dwi_unwarped.fullPath())
    new_bvecs = numpy.loadtxt(FSL_topup_directory +
                              '/topup_eddy.eddy_rotated_bvecs')
    new_bvecs = new_bvecs[:, :up_bvecs.shape[1]]
    numpy.savetxt(self.corrected_bvecs.fullPath(), new_bvecs, fmt='%.15f')

    transformManager = getTransformationManager()
    transformManager.copyReferential(self.dwi_data, self.dwi_unwarped)

    context.write('Finished')