コード例 #1
0
def test_cpu_histogram():
    # Construct a minimal SPN.
    h1 = Histogram([0., 1., 2.], [0.25, 0.75], [1, 1], scope=0)
    h2 = Histogram([0., 3., 6., 8.], [0.35, 0.1, 0.55], [1, 1], scope=1)
    h3 = Histogram([0., 1., 2.], [0.33, 0.67], [1, 1], scope=0)
    h4 = Histogram([0., 5., 8.], [0.875, 0.125], [1, 1], scope=1)

    p0 = Product(children=[h1, h2])
    p1 = Product(children=[h3, h4])
    spn = Sum([0.3, 0.7], [p0, p1])

    inputs = np.column_stack((
        np.random.randint(2, size=30),
        np.random.randint(8, size=30),
    )).astype("float64")

    # Insert some NaN in random places into the input data.
    inputs.ravel()[np.random.choice(inputs.size, 5, replace=False)] = np.nan

    if not CUDACompiler.isAvailable():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CUDACompiler().log_likelihood(spn, inputs)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(spn, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(
        np.isclose(np.exp(results), np.exp(reference)))
コード例 #2
0
def test_cuda_categorical():
    # Construct a minimal SPN
    c1 = Categorical(p=[0.35, 0.55, 0.1], scope=0)
    c2 = Categorical(p=[0.25, 0.625, 0.125], scope=1)
    c3 = Categorical(p=[0.5, 0.2, 0.3], scope=2)
    c4 = Categorical(p=[0.6, 0.15, 0.25], scope=3)
    c5 = Categorical(p=[0.7, 0.11, 0.19], scope=4)
    c6 = Categorical(p=[0.8, 0.14, 0.06], scope=5)
    p = Product(children=[c1, c2, c3, c4, c5, c6])

    # Randomly sample input values.
    inputs = np.column_stack((
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
    )).astype("float64")

    if not CUDACompiler.isAvailable():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CUDACompiler().log_likelihood(p, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(p, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(
        np.isclose(np.exp(results), np.exp(reference)))
コード例 #3
0
def test_cuda_marginal_gaussian():

    # Construct a minimal SPN using two Gaussian leaves.
    g1 = Gaussian(mean=0.5, stdev=1, scope=0)
    g2 = Gaussian(mean=0.125, stdev=0.25, scope=1)
    g3 = Gaussian(mean=0.345, stdev=0.24, scope=2)
    g4 = Gaussian(mean=0.456, stdev=0.1, scope=3)
    g5 = Gaussian(mean=0.94, stdev=0.48, scope=4)
    g6 = Gaussian(mean=0.56, stdev=0.42, scope=5)
    g7 = Gaussian(mean=0.76, stdev=0.14, scope=6)
    g8 = Gaussian(mean=0.32, stdev=0.8, scope=7)
    g9 = Gaussian(mean=0.58, stdev=0.9, scope=8)
    g10 = Gaussian(mean=0.14, stdev=0.2, scope=9)
    p = Product(children=[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10])

    # Randomly sample input values from the two Gaussian (normal) distributions.
    inputs = np.column_stack((np.random.normal(0.5, 1, 30),
                            np.random.normal(0.125, 0.25, 30),
                            np.random.normal(0.345, 0.24, 30),
                            np.random.normal(0.456, 0.1, 30),
                            np.random.normal(0.94, 0.48, 30),
                            np.random.normal(0.56, 0.42, 30),
                            np.random.normal(0.76, 0.14, 30),
                            np.random.normal(0.32, 0.8, 30),
                            np.random.normal(0.58, 0.9, 30),
                            np.random.normal(0.14, 0.2, 30))).astype("float32")

    inputs.ravel()[np.random.choice(inputs.size, 15, replace=False)] = np.nan

    if not CUDACompiler.isAvailable():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CUDACompiler().log_likelihood(p, inputs)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(p, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(np.isclose(np.exp(results), np.exp(reference)))
コード例 #4
0
def test_cuda_NIPS5():
    # Locate test resources located in same directory as this script.
    scriptPath = os.path.realpath(os.path.dirname(__file__))

    # Deserialize model
    query = BinaryDeserializer(os.path.join(scriptPath, "NIPS5.bin")).deserialize_from_file()
    spn = query.graph.root

    inputs = np.genfromtxt(os.path.join(scriptPath, "inputdata.txt"), delimiter=";", dtype="int32")
    # Execute the compiled Kernel.
    results = CUDACompiler(computeInLogSpace=False).log_likelihood(spn, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = np.genfromtxt(os.path.join(scriptPath, "outputdata.txt"), delimiter=";", dtype="float64")
    reference = reference.reshape(10000)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(np.isclose(np.exp(results), np.exp(reference)))
コード例 #5
0
import numpy as np

import os

from spn.structure.Base import Product, Sum
from spn.structure.leaves.histogram.Histograms import Histogram
from spn.algorithms.Inference import log_likelihood

from xspn.serialization.binary.BinarySerialization import BinaryDeserializer

from spnc.gpu import CUDACompiler

import pytest


@pytest.mark.skipif(not CUDACompiler.isAvailable(), reason="CUDA not supported")
def test_cuda_NIPS5():
    # Locate test resources located in same directory as this script.
    scriptPath = os.path.realpath(os.path.dirname(__file__))

    # Deserialize model
    query = BinaryDeserializer(os.path.join(scriptPath, "NIPS5.bin")).deserialize_from_file()
    spn = query.graph.root

    inputs = np.genfromtxt(os.path.join(scriptPath, "inputdata.txt"), delimiter=";", dtype="int32")
    # Execute the compiled Kernel.
    results = CUDACompiler(computeInLogSpace=False).log_likelihood(spn, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = np.genfromtxt(os.path.join(scriptPath, "outputdata.txt"), delimiter=";", dtype="float64")
    reference = reference.reshape(10000)
コード例 #6
0
#  file that was distributed with this source code.
#  SPDX-License-Identifier: Apache-2.0
# ==============================================================================

import numpy as np

import pytest

from spn.structure.Base import Product, Sum
from spn.structure.leaves.histogram.Histograms import Histogram
from spn.algorithms.Inference import log_likelihood

from spnc.gpu import CUDACompiler


@pytest.mark.skipif(not CUDACompiler.isAvailable(),
                    reason="CUDA not supported")
def test_cpu_histogram():
    # Construct a minimal SPN.
    h1 = Histogram([0., 1., 2.], [0.25, 0.75], [1, 1], scope=0)
    h2 = Histogram([0., 3., 6., 8.], [0.35, 0.1, 0.55], [1, 1], scope=1)
    h3 = Histogram([0., 1., 2.], [0.33, 0.67], [1, 1], scope=0)
    h4 = Histogram([0., 5., 8.], [0.875, 0.125], [1, 1], scope=1)

    p0 = Product(children=[h1, h2])
    p1 = Product(children=[h3, h4])
    spn = Sum([0.3, 0.7], [p0, p1])

    inputs = np.column_stack((
        np.random.randint(2, size=30),
        np.random.randint(8, size=30),