def test_cpu_histogram():
    # Construct a minimal SPN.
    h1 = Histogram([0., 1., 2.], [0.25, 0.75], [1, 1], scope=0)
    h2 = Histogram([0., 3., 6., 8.], [0.35, 0.1, 0.55], [1, 1], scope=1)
    h3 = Histogram([0., 1., 2.], [0.33, 0.67], [1, 1], scope=0)
    h4 = Histogram([0., 5., 8.], [0.875, 0.125], [1, 1], scope=1)

    p0 = Product(children=[h1, h2])
    p1 = Product(children=[h3, h4])
    spn = Sum([0.3, 0.7], [p0, p1])

    inputs = np.column_stack((
        np.random.randint(2, size=30),
        np.random.randint(8, size=30),
    )).astype("float64")

    # Insert some NaN in random places into the input data.
    inputs.ravel()[np.random.choice(inputs.size, 5, replace=False)] = np.nan

    if not CUDACompiler.isAvailable():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CUDACompiler().log_likelihood(spn, inputs)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(spn, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(
        np.isclose(np.exp(results), np.exp(reference)))
Пример #2
0
def test_cuda_categorical():
    # Construct a minimal SPN
    c1 = Categorical(p=[0.35, 0.55, 0.1], scope=0)
    c2 = Categorical(p=[0.25, 0.625, 0.125], scope=1)
    c3 = Categorical(p=[0.5, 0.2, 0.3], scope=2)
    c4 = Categorical(p=[0.6, 0.15, 0.25], scope=3)
    c5 = Categorical(p=[0.7, 0.11, 0.19], scope=4)
    c6 = Categorical(p=[0.8, 0.14, 0.06], scope=5)
    p = Product(children=[c1, c2, c3, c4, c5, c6])

    # Randomly sample input values.
    inputs = np.column_stack((
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
    )).astype("float64")

    if not CUDACompiler.isAvailable():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CUDACompiler().log_likelihood(p, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(p, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(
        np.isclose(np.exp(results), np.exp(reference)))
def test_cuda_marginal_gaussian():

    # Construct a minimal SPN using two Gaussian leaves.
    g1 = Gaussian(mean=0.5, stdev=1, scope=0)
    g2 = Gaussian(mean=0.125, stdev=0.25, scope=1)
    g3 = Gaussian(mean=0.345, stdev=0.24, scope=2)
    g4 = Gaussian(mean=0.456, stdev=0.1, scope=3)
    g5 = Gaussian(mean=0.94, stdev=0.48, scope=4)
    g6 = Gaussian(mean=0.56, stdev=0.42, scope=5)
    g7 = Gaussian(mean=0.76, stdev=0.14, scope=6)
    g8 = Gaussian(mean=0.32, stdev=0.8, scope=7)
    g9 = Gaussian(mean=0.58, stdev=0.9, scope=8)
    g10 = Gaussian(mean=0.14, stdev=0.2, scope=9)
    p = Product(children=[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10])

    # Randomly sample input values from the two Gaussian (normal) distributions.
    inputs = np.column_stack((np.random.normal(0.5, 1, 30),
                            np.random.normal(0.125, 0.25, 30),
                            np.random.normal(0.345, 0.24, 30),
                            np.random.normal(0.456, 0.1, 30),
                            np.random.normal(0.94, 0.48, 30),
                            np.random.normal(0.56, 0.42, 30),
                            np.random.normal(0.76, 0.14, 30),
                            np.random.normal(0.32, 0.8, 30),
                            np.random.normal(0.58, 0.9, 30),
                            np.random.normal(0.14, 0.2, 30))).astype("float32")

    inputs.ravel()[np.random.choice(inputs.size, 15, replace=False)] = np.nan

    if not CUDACompiler.isAvailable():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CUDACompiler().log_likelihood(p, inputs)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(p, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(np.isclose(np.exp(results), np.exp(reference)))
def test_cuda_NIPS5():
    # Locate test resources located in same directory as this script.
    scriptPath = os.path.realpath(os.path.dirname(__file__))

    # Deserialize model
    query = BinaryDeserializer(os.path.join(scriptPath, "NIPS5.bin")).deserialize_from_file()
    spn = query.graph.root

    inputs = np.genfromtxt(os.path.join(scriptPath, "inputdata.txt"), delimiter=";", dtype="int32")
    # Execute the compiled Kernel.
    results = CUDACompiler(computeInLogSpace=False).log_likelihood(spn, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = np.genfromtxt(os.path.join(scriptPath, "outputdata.txt"), delimiter=";", dtype="float64")
    reference = reference.reshape(10000)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(np.isclose(np.exp(results), np.exp(reference)))
import numpy as np

import os

from spn.structure.Base import Product, Sum
from spn.structure.leaves.histogram.Histograms import Histogram
from spn.algorithms.Inference import log_likelihood

from xspn.serialization.binary.BinarySerialization import BinaryDeserializer

from spnc.gpu import CUDACompiler

import pytest


@pytest.mark.skipif(not CUDACompiler.isAvailable(), reason="CUDA not supported")
def test_cuda_NIPS5():
    # Locate test resources located in same directory as this script.
    scriptPath = os.path.realpath(os.path.dirname(__file__))

    # Deserialize model
    query = BinaryDeserializer(os.path.join(scriptPath, "NIPS5.bin")).deserialize_from_file()
    spn = query.graph.root

    inputs = np.genfromtxt(os.path.join(scriptPath, "inputdata.txt"), delimiter=";", dtype="int32")
    # Execute the compiled Kernel.
    results = CUDACompiler(computeInLogSpace=False).log_likelihood(spn, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = np.genfromtxt(os.path.join(scriptPath, "outputdata.txt"), delimiter=";", dtype="float64")
    reference = reference.reshape(10000)
#  file that was distributed with this source code.
#  SPDX-License-Identifier: Apache-2.0
# ==============================================================================

import numpy as np

import pytest

from spn.structure.Base import Product, Sum
from spn.structure.leaves.histogram.Histograms import Histogram
from spn.algorithms.Inference import log_likelihood

from spnc.gpu import CUDACompiler


@pytest.mark.skipif(not CUDACompiler.isAvailable(),
                    reason="CUDA not supported")
def test_cpu_histogram():
    # Construct a minimal SPN.
    h1 = Histogram([0., 1., 2.], [0.25, 0.75], [1, 1], scope=0)
    h2 = Histogram([0., 3., 6., 8.], [0.35, 0.1, 0.55], [1, 1], scope=1)
    h3 = Histogram([0., 1., 2.], [0.33, 0.67], [1, 1], scope=0)
    h4 = Histogram([0., 5., 8.], [0.875, 0.125], [1, 1], scope=1)

    p0 = Product(children=[h1, h2])
    p1 = Product(children=[h3, h4])
    spn = Sum([0.3, 0.7], [p0, p1])

    inputs = np.column_stack((
        np.random.randint(2, size=30),
        np.random.randint(8, size=30),