# Use this file as you wish to generate the images needed to answer the report import src.project.Utilities as util import src.project.ImageSynthesisNoise as isn import cv2 import numpy as np # image = util.loadImage('images/brain.png') matrix = util.loadMatrix('images/noisyimage.npy') rows, cols = matrix.shape mask = isn.gaussianLowpassFilter((rows, cols), cutoff=40) im = np.multiply(matrix, mask) im = util.post_process_images(util.getImage(im)) # im = np.abs(matrix) # im = util.post_process_images(im) # rows, cols = image.shape util.displayImage(im) # mask = isn.butterworthLowpassFilter((rows, cols), cutoff=40, order=7) # mask = isn.gaussianHighpassFilter((rows, cols), cutoff=150) # shift_fft = util.getDFT(image) # filtered_image_fft = np.multiply(mask, shift_fft) # filtered_image = util.post_process_images(util.getImage(filtered_image_fft)) # util.saveImage('butterworthLowpassFilter.png', filtered_image) # print(util.signalToNoise(filtered_image)) # util.displayImage(filtered_image)
# Use this file as you wish to generate the images needed to answer the report import src.project.Utilities as util import numpy as np import src.project.SelectiveImageAcquisition as sia image = util.loadImage('images/brain.png') rows, cols = image.shape print(image.shape) # code for cardiac cartesian # mask = sia.cartesianPattern((rows, cols), 0.7) mask = sia.circlePattern((rows, cols), 90) shift_fft = util.getDFT(image) filtered_image_fft = np.multiply(mask, shift_fft) filtered_image = util.post_process_images(util.getImage(filtered_image_fft)) util.displayImage(filtered_image)