#mask_size2 = (h, w) percent = .5 mask = sia.cartesianPattern(mask_size2, percent) mask1 = sia.cartesianPattern(mask_size2, .05) mask2 = sia.cartesianPattern(mask_size2, .15) mask3 = sia.cartesianPattern(mask_size2, .35) mask4 = sia.cartesianPattern(mask_size2, .64) masks = (mask1, mask2, mask3, mask4) count = 0 for mask in masks: a = util.applyMask(img_copy2, mask) b = util.writableDFT(a) c = util.normalizeImage(b) d = util.post_process_image(c) count += 1 print(count) util.displayImage(d) ############## Part 4 ##################### #change img(heart) to img2(brain) # img_copy = util.getDFT(img2) # rays = (1, 15, 50, 100, 360) # # mask = sia.radialPattern(mask_size2, rays[0]) # # mask1 = sia.radialPattern(mask_size2, rays[1])
import cv2 import numpy as np import src.project.SelectiveImageAcquisition as aqc import src.project.Utilities as util cardiac = util.loadImage("images/cardiac.jpg") normal_cardiac = util.normalizeImage(cardiac) dft_cardiac = util.getDFT(normal_cardiac) write_dft = util.writableDFT(dft_cardiac) util.saveMatrix("Cardiac_DFT.jpg", write_dft) height, width = cardiac.shape cardiac_size = np.array([height, width]) brain = util.loadImage("images/brain.png") normal_brain = util.normalizeImage(brain) dft_brain = util.getDFT(normal_brain) #util.saveMatrix("Brain_DFT.jpg", dft_brain) height, width = brain.shape brain_size = np.array([height, width]) p1mask = aqc.bandPattern(cardiac_size, 15, 128, 35) p1fmask = util.post_process_image(p1mask) util.saveImage("p1fmask.jpg", p1fmask) p1applied = util.applyMask(dft_cardiac, p1mask) p1image = util.getImage(p1applied) p1fimage = util.post_process_image(p1image) util.saveImage('p1_Masked_Image.jpg', p1fimage) p2mask1 = aqc.bandPattern(cardiac_size, 15, 128, 10) p2applied1 = util.applyMask(dft_cardiac, p2mask1)
filename = "p7_GLP_Masked_Image_" + str(k) + ".jpg" util.saveImage(filename, p7lfimage) p7hmask = noise.gaussianHighpassFilter(brain_size, k) p7happlied = util.applyMask(dft_brain, p7hmask) p7himage = util.getImage(p7happlied) p7hfimage = util.post_process_image(p7himage) filename = "p7_GHP_Masked_Image_" + str(k) + ".jpg" util.saveImage(filename, p7hfimage) noisy = util.loadMatrix("images/noisyimage.npy") noisy_2 = noisy.real.astype(np.complex128) noisy_image = util.getImage(noisy_2) noisyfi = util.post_process_image(noisy_image) #util.displayImage(noisyfi) noisy_2_write = util.writableDFT(noisy_2) #util.displayImage_plt(noisy_2_write) height_noisy, width_noisy = noisy_2.shape noisy_size = np.array([height_noisy, width_noisy]) p8mask1 = noise.butterworthLowpassFilter(noisy_size, 99, 100) p8mask2 = noise.gaussianLowpassFilter(noisy_size, 50) p8mask3 = noise.idealLowpassFilter(noisy_size, 99) p8applied1 = util.applyMask(noisy_2, p8mask1) p8applied2 = util.applyMask(noisy_2, p8mask2) p8applied3 = util.applyMask(noisy_2, p8mask3) p8image1 = util.getImage(p8applied1) p8image2 = util.getImage(p8applied2) p8image3 = util.getImage(p8applied3) p8fimage1 = util.post_process_image(p8image1) p8fimage2 = util.post_process_image(p8image2) p8fimage3 = util.post_process_image(p8image3)