def test_fit_and_predict(self): MAX_STEPS = 100 additional["max_steps"] = MAX_STEPS iters_cnt = 5 max_iters = MaxItersConstraint({"max_iters": iters_cnt}) metric_logger = MetricLogger({"metric_names": ["logloss"]}) il = IterativeLearner(self.train_params, callbacks=[max_iters, metric_logger]) il.train(self.data) metric_logs = il.get_metric_logs() for k in range(self.kfolds): self.assertEqual( len(metric_logs[il.learners[k].uid]["train"]["logloss"]), iters_cnt ) self.assertNotEqual( len(metric_logs[il.learners[k].uid]["train"]["logloss"]), MAX_STEPS )
def test_fit_and_predict(self): MAX_STEPS = 10 additional["max_steps"] = MAX_STEPS metric_logger = MetricLogger({"metric_names": ["logloss", "auc"]}) il = IterativeLearner(self.train_params, callbacks=[metric_logger]) il.train(self.data) metric_logs = il.get_metric_logs() self.assertEqual( len(metric_logs[il.learners[0].uid]["train"]["logloss"]), len(metric_logs[il.learners[0].uid]["train"]["auc"]), ) self.assertEqual( len(metric_logs[il.learners[0].uid]["train"]["logloss"]), len(metric_logs[il.learners[0].uid]["iters"]), ) self.assertEqual( len(metric_logs[il.learners[0].uid]["train"]["logloss"]), MAX_STEPS)