def test_save_and_load(self): self.assertTrue( "Private" in list(self.data["train"]["X"]["workclass"])) early_stop = EarlyStopping({"metric": {"name": "logloss"}}) metric_logger = MetricLogger({"metric_names": ["logloss", "auc"]}) il = IterativeLearner(self.train_params, callbacks=[early_stop, metric_logger]) il.train(self.data) y_predicted = il.predict(self.data["train"]["X"]) metric = Metric({"name": "logloss"}) loss_1 = metric(self.data["train"]["y"], y_predicted) json_desc = il.to_json() il2 = IterativeLearner(self.train_params, callbacks=[]) self.assertTrue(il.uid != il2.uid) il2.from_json(json_desc) self.assertTrue(il.uid == il2.uid) y_predicted_2 = il2.predict(self.data["train"]["X"]) loss_2 = metric(self.data["train"]["y"], y_predicted_2) assert_almost_equal(loss_1, loss_2) uids = [i.uid for i in il.learners] uids2 = [i.uid for i in il2.learners] for u in uids: self.assertTrue(u in uids2)
def test_save_and_load(self): il = IterativeLearner(self.train_params, callbacks=[]) il.train(self.data) metric = Metric({"name": "logloss"}) loss = metric(self.y, il.predict(self.X)) json_desc = il.to_json() il2 = IterativeLearner(json_desc.get("params"), callbacks=[]) self.assertTrue(il.uid != il2.uid) il2.from_json(json_desc) self.assertTrue(il.uid == il2.uid) loss2 = metric(self.y, il2.predict(self.X)) assert_almost_equal(loss, loss2) uids = [i.uid for i in il.learners] uids2 = [i.uid for i in il2.learners] for u in uids: self.assertTrue(u in uids2)