コード例 #1
0
def get_Abs(Ws, vs, Qs):
    
    """produces the pre activation feature maps of layer ell"""

    n = Qs[-1].shape[0]
    As = [Ws[0] * T.ones((n, 1, 1))]
    bs = [vs[0] * T.ones((n, 1))]
    for i in range(len(Qs)):
        As.append(T.einsum('db,nb,nbs->nds', Ws[i + 1], Qs[i], As[-1]))
        bs.append(T.einsum('db,nb,nb->nd', Ws[i + 1], Qs[i], bs[-1])\
                  + vs[i + 1])

    return As, bs
コード例 #2
0
def compute_W_derivative(lhs, rhs, Ws, Qs, l):

    L = len(Qs)

    backward_As = [rhs]
    for i in range(0, l):
        backward_As.append(T.einsum('na,as,ns->na', Qs[i], Ws[i],
                                    backward_As[-1]))

    forward_As = [lhs]
    for i in range(l, L):
        forward_As.append(T.einsum('ns,sb,nb->nb', forward_As[-1],
                                   Ws[- i], Qs[-1]))

    return T.einsum('na,nb->nab', forward_As, backward_As)
コード例 #3
0
def get_forward(Ws, Qs):
    """this function gives the slope matrix that forwards any pre activation
    of layer l to the output layer which is ::
        W^{L}Q^{L}_{\omega}W^{\ell}Q^{\ell}
    for the \ell element of the returned list. For the first one, is returns
    the entire A_{\omega} and for the last one it is the identity matrix
    """
    N = Qs[-1].shape[0]
    L = len(Qs)

    forward = [T.identity(Ws[-1].shape[0]) * T.ones((N, 1, 1))]
    for i in range(L):
        forward.append(T.einsum('ndb,bs,ns->nds', forward[-1], Ws[- 1 - i],
                                Qs[- 1 - i]))

    return forward[::-1]
コード例 #4
0
def create_fns(input,
               in_signs,
               Ds,
               x,
               m0,
               m1,
               m2,
               batch_in_signs,
               alpha=0.1,
               sigma=1,
               sigma_x=1,
               lr=0.0002):

    cumulative_units = np.concatenate([[0], np.cumsum(Ds[:-1])])
    BS = batch_in_signs.shape[0]
    Ws = [
        T.Variable(sj.initializers.glorot((j, i)) * sigma)
        for j, i in zip(Ds[1:], Ds[:-1])
    ]
    bs = [T.Variable(sj.initializers.he((j,)) * sigma) for j in Ds[1:-1]]\
                + [T.Variable(T.zeros((Ds[-1],)))]

    A_w = [T.eye(Ds[0])]
    B_w = [T.zeros(Ds[0])]

    A_q = [T.eye(Ds[0])]
    B_q = [T.zeros(Ds[0])]

    batch_A_q = [T.eye(Ds[0]) * T.ones((BS, 1, 1))]
    batch_B_q = [T.zeros((BS, Ds[0]))]

    maps = [input]
    signs = []
    masks = [T.ones(Ds[0])]

    in_masks = T.where(T.concatenate([T.ones(Ds[0]), in_signs]) > 0, 1., alpha)
    batch_in_masks = T.where(
        T.concatenate([T.ones((BS, Ds[0])), batch_in_signs], 1) > 0, 1., alpha)

    for w, b in zip(Ws[:-1], bs[:-1]):

        pre_activation = T.matmul(w, maps[-1]) + b
        signs.append(T.sign(pre_activation))
        masks.append(T.where(pre_activation > 0, 1., alpha))

        maps.append(pre_activation * masks[-1])

    maps.append(T.matmul(Ws[-1], maps[-1]) + bs[-1])

    # compute per region A and B
    for start, end, w, b, m in zip(cumulative_units[:-1], cumulative_units[1:],
                                   Ws, bs, masks):

        A_w.append(T.matmul(w * m, A_w[-1]))
        B_w.append(T.matmul(w * m, B_w[-1]) + b)

        A_q.append(T.matmul(w * in_masks[start:end], A_q[-1]))
        B_q.append(T.matmul(w * in_masks[start:end], B_q[-1]) + b)

        batch_A_q.append(
            T.matmul(w * batch_in_masks[:, None, start:end], batch_A_q[-1]))
        batch_B_q.append((w * batch_in_masks[:, None, start:end]\
                            * batch_B_q[-1][:, None, :]).sum(2) + b)

    batch_B_q = batch_B_q[-1]
    batch_A_q = batch_A_q[-1]

    signs = T.concatenate(signs)

    inequalities = T.hstack(
        [T.concatenate(B_w[1:-1])[:, None],
         T.vstack(A_w[1:-1])]) * signs[:, None]

    inequalities_code = T.hstack(
        [T.concatenate(B_q[1:-1])[:, None],
         T.vstack(A_q[1:-1])]) * in_signs[:, None]

    #### loss
    log_sigma2 = T.Variable(sigma_x)
    sigma2 = T.exp(log_sigma2)

    Am1 = T.einsum('qds,nqs->nqd', batch_A_q, m1)
    Bm0 = T.einsum('qd,nq->nd', batch_B_q, m0)
    B2m0 = T.einsum('nq,qd->n', m0, batch_B_q**2)
    AAm2 = T.einsum('qds,qdu,nqup->nsp', batch_A_q, batch_A_q, m2)

    inner = -(x * (Am1.sum(1) + Bm0)).sum(1) + (Am1 * batch_B_q).sum((1, 2))

    loss_2 = (x**2).sum(1) + B2m0 + T.trace(AAm2, axis1=1, axis2=2).squeeze()

    loss_z = T.trace(m2.sum(1), axis1=1, axis2=2).squeeze()

    cst = 0.5 * (Ds[0] + Ds[-1]) * T.log(2 * np.pi)

    loss = cst + 0.5 * Ds[-1] * log_sigma2 + inner / sigma2\
            + 0.5 * loss_2 / sigma2 + 0.5 * loss_z

    mean_loss = loss.mean()
    adam = sj.optimizers.NesterovMomentum(mean_loss, Ws + bs, lr, 0.9)

    train_f = sj.function(batch_in_signs,
                          x,
                          m0,
                          m1,
                          m2,
                          outputs=mean_loss,
                          updates=adam.updates)
    f = sj.function(input,
                    outputs=[maps[-1], A_w[-1], B_w[-1], inequalities, signs])
    g = sj.function(in_signs, outputs=[A_q[-1], B_q[-1]])
    all_g = sj.function(in_signs, outputs=inequalities_code)
    h = sj.function(input, outputs=maps[-1])
    return f, g, h, all_g, train_f, sigma2
コード例 #5
0
def create_fns(batch_size, R, Ds, seed, leakiness=0.1, lr=0.0002, scaler=1,
               var_x=1):

    alpha = T.Placeholder((1,), 'float32')
    x = T.Placeholder((Ds[0],), 'float32')
    X = T.Placeholder((batch_size, Ds[-1]), 'float32')

    signs = T.Placeholder((np.sum(Ds[1:-1]),), 'float32')
    SIGNS = T.Placeholder((R, np.sum(Ds[1:-1])), 'float32')
    
    m0 = T.Placeholder((batch_size, R), 'float32')
    m1 = T.Placeholder((batch_size, R, Ds[0]), 'float32')
    m2 = T.Placeholder((batch_size, R, Ds[0], Ds[0]), 'float32')

    Ws, vs = init_weights(Ds, seed, scaler)
    Ws = [T.Variable(w, name='W' + str(l)) for l, w in enumerate(Ws)]
    vs = [T.Variable(v, name='v' + str(l)) for l, v in enumerate(vs)]

    var_x = T.Variable(T.ones(Ds[-1]) * var_x)
    var_z = T.Variable(T.ones(Ds[0]))

    # create the placeholders
    Ws_ph = [T.Placeholder(w.shape, w.dtype) for w in Ws]
    vs_ph = [T.Placeholder(v.shape, v.dtype) for v in vs]
    var_x_ph = T.Placeholder(var_x.shape, var_x.dtype)

    ############################################################################
    # Compute the output of g(x)
    ############################################################################

    maps = [x]
    xsigns = []
    masks = []
    
    for w, v in zip(Ws[:-1], vs[:-1]):
        
        pre_activation = T.matmul(w, maps[-1]) + v
        xsigns.append(T.sign(pre_activation))
        masks.append(relu_mask(pre_activation, leakiness))
        maps.append(pre_activation * masks[-1])

    xsigns = T.concatenate(xsigns)
    maps.append(T.matmul(Ws[-1], maps[-1]) + vs[-1])

    ############################################################################
    # compute the masks and then the per layer affine mappings
    ############################################################################

    cumulative_units = np.cumsum([0] + Ds[1:])
    xqs = relu_mask([xsigns[None, cumulative_units[i]:cumulative_units[i + 1]]
                    for i in range(len(Ds) - 2)], leakiness)
    qs = relu_mask([signs[None, cumulative_units[i]:cumulative_units[i + 1]]
                    for i in range(len(Ds) - 2)], leakiness)
    Qs = relu_mask([SIGNS[:, cumulative_units[i]:cumulative_units[i + 1]]
                    for i in range(len(Ds) - 2)], leakiness)

    Axs, bxs = get_Abs(Ws, vs, xqs)
    Aqs, bqs = get_Abs(Ws, vs, qs)
    AQs, bQs = get_Abs(Ws, vs, Qs)

    all_bxs = T.hstack(bxs[:-1]).transpose()
    all_Axs = T.hstack(Axs[:-1])[0]

    all_bqs = T.hstack(bqs[:-1]).transpose()
    all_Aqs = T.hstack(Aqs[:-1])[0]

    x_inequalities = T.hstack([all_Axs, all_bxs]) * xsigns[:, None]
    q_inequalities = T.hstack([all_Aqs, all_bqs]) * signs[:, None]

    ############################################################################
    # loss (E-step NLL)
    ############################################################################

    Bm0 = T.einsum('nd,Nn->Nd', bQs[-1], m0)
    B2m0 = T.einsum('nd,Nn->Nd', bQs[-1] ** 2, m0)
    Am1 = T.einsum('nds,Nns->Nd', AQs[-1], m1)
    ABm1 = T.einsum('nds,nd,Nns->Nd', AQs[-1], bQs[-1], m1)
    Am2ATdiag = T.diagonal(T.einsum('nds,Nnsc,npc->Ndp', AQs[-1], m2, AQs[-1]),
                        axis1=1, axis2=2)
    xAm1Bm0 = X * (Am1 + Bm0)

    M2diag = T.diagonal(m2.sum(1), axis1=1, axis2=2)
    
    prior = sum([T.mean(w**2) for w in Ws], 0.) / cov_W\
            + sum([T.mean(v**2) for v in vs[:-1]], 0.) / cov_b
    loss = - 0.5 * (T.log(var_x).sum() + T.log(var_z).sum()\
            + (M2diag / var_z).sum(1).mean() + ((X ** 2 - 2 * xAm1Bm0 + B2m0\
            + Am2ATdiag + 2 * ABm1) / var_x).sum(1).mean())

    mean_loss = - (loss + 0.5 * prior)
    adam = sj.optimizers.SGD(mean_loss, 0.001, params=Ws + vs)

    ############################################################################
    # update of var_x
    ############################################################################

    update_varx = (X ** 2 - 2 * xAm1Bm0 + B2m0 + Am2ATdiag + 2 * ABm1).mean()\
                    * T.ones(Ds[-1])
    update_varz = M2diag.mean() * T.ones(Ds[0])

    ############################################################################
    # update for biases IT IS DONE FOR ISOTROPIC COVARIANCE MATRIX
    ############################################################################

    FQ = get_forward(Ws, Qs)
    update_vs = {}
    for i in range(len(vs)):
        
        if i < len(vs) - 1:
            # now we forward each bias to the x-space except the ith
            separated_bs = bQs[-1] - T.einsum('nds,s->nd', FQ[i], vs[i])
            # compute the residual and apply sigma
            residual = (X[:, None, :] - separated_bs) * m0[:, :, None]\
                                         - T.einsum('nds,Nns->Nnd', AQs[-1], m1)
            back_error = T.einsum('nds,nd->s', FQ[i], residual.mean(0))
            whiten = T.einsum('ndc,nds,n->cs', FQ[i] , FQ[i], m0.mean(0))\
                        + T.eye(back_error.shape[0]) / (Ds[i] * cov_b)
            update_vs[vs[i]] = T.linalg.solve(whiten, back_error)
        else:
            back_error = (X - (Am1 + Bm0) + vs[-1])
            update_vs[vs[i]] = back_error.mean(0)

    ############################################################################
    # update for slopes IT IS DONE FOR ISOTROPIC COVARIANCE MATRIX 
    ############################################################################

    update_Ws = {}
    for i in range(len(Ws)):
        
        U = T.einsum('nds,ndc->nsc', FQ[i], FQ[i])
        if i == 0:
            V = m2.mean(0)
        else:
            V1 = T.einsum('nd,nq,Nn->ndq', bQs[i-1], bQs[i-1], m0)
            V2 = T.einsum('nds,nqc,Nnsc->ndq', AQs[i-1], AQs[i-1], m2)
            V3 = T.einsum('nds,nq,Nns->ndq', AQs[i-1], bQs[i-1], m1)
            Q = T.einsum('nd,nq->ndq', Qs[i - 1], Qs[i - 1])
            V = Q * (V1 + V2 + V3 + V3.transpose((0, 2, 1))) / batch_size

        whiten = T.stack([T.kron(U[n], V[n]) for n in range(V.shape[0])]).sum(0)
        whiten = whiten + T.eye(whiten.shape[-1]) / (Ds[i]*Ds[i+1]*cov_W)
        # compute the residual (bottom up)
        if i == len(Ws) - 1:
            bottom_up = (X[:, None, :] - vs[-1])
        else:
            if i == 0:
                residual = (X[:, None, :] - bQs[-1])
            else:
                residual = (X[:, None, :] - bQs[-1]\
                            + T.einsum('nds,ns->nd', FQ[i - 1], bQs[i-1]))
            bottom_up = T.einsum('ndc,Nnd->Nnc', FQ[i], residual)

        # compute the top down vector
        if i == 0:
            top_down = m1
        else:
            top_down = Qs[i - 1] * (T.einsum('nds,Nns->Nnd', AQs[i - 1], m1) +\
                               T.einsum('nd,Nn->Nnd', bQs[i - 1], m0))

        vector = T.einsum('Nnc,Nns->cs', bottom_up, top_down) / batch_size
        condition = T.diagonal(whiten)
        update_W = T.linalg.solve(whiten, vector.reshape(-1)).reshape(Ws[i].shape)
        update_Ws[Ws[i]] = update_W

    ############################################################################
    # create the io functions
    ############################################################################

    params = sj.function(outputs = Ws + vs + [var_x])
    ll = T.Placeholder((), 'int32')
    selector = T.one_hot(ll, len(vs))
    for i in range(len(vs)):
        update_vs[vs[i]] = ((1 - alpha) * vs[i] + alpha * update_vs[vs[i]])\
                            * selector[i] + vs[i] * (1 - selector[i])
    for i in range(len(Ws)):
        update_Ws[Ws[i]] = ((1 - alpha) * Ws[i] + alpha * update_Ws[Ws[i]])\
                            * selector[i] + Ws[i] * (1 - selector[i])

    output = {'train':sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss,
                                  updates=adam.updates),
              'update_var':sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss,
                                        updates = {var_x: update_varx}),
              'update_vs':sj.function(alpha, ll, SIGNS, X, m0, m1, m2, outputs=mean_loss,
                                      updates = update_vs),
              'loss':sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss),
              'update_Ws':sj.function(alpha, ll, SIGNS, X, m0, m1, m2, outputs=mean_loss,
                                      updates = update_Ws),
              'signs2Ab': sj.function(signs, outputs=[Aqs[-1][0], bqs[-1][0]]),
              'signs2ineq': sj.function(signs, outputs=q_inequalities),
              'g': sj.function(x, outputs=maps[-1]),
              'input2all': sj.function(x, outputs=[maps[-1], Axs[-1][0],
                                       bxs[-1][0], x_inequalities, xsigns]),
              'get_nll': sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss),
              'assign': sj.function(*Ws_ph, *vs_ph, var_x_ph,
                                    updates=dict(zip(Ws + vs + [var_x],
                                             Ws_ph + vs_ph + [var_x_ph]))),
              'varx': sj.function(outputs=var_x),
              'prior': sj.function(outputs=prior),
              'varz': sj.function(outputs=var_z),
              'params': params,
#              'probed' : sj.function(SIGNS, X, m0, m1, m2, outputs=probed),
              'input2signs': sj.function(x, outputs=xsigns),
              'S' : Ds[0], 'D':  Ds[-1], 'R': R, 'model': 'EM', 'L':len(Ds)-1,
              'kwargs': {'batch_size': batch_size, 'Ds':Ds, 'seed':seed,
                    'leakiness':leakiness, 'lr':lr, 'scaler':scaler}}
 
    def sample(n):
        samples = []
        for i in range(n):
            samples.append(output['g'](np.random.randn(Ds[0])))
        return np.array(samples)
    
    output['sample'] = sample

    return output