def get_Abs(Ws, vs, Qs): """produces the pre activation feature maps of layer ell""" n = Qs[-1].shape[0] As = [Ws[0] * T.ones((n, 1, 1))] bs = [vs[0] * T.ones((n, 1))] for i in range(len(Qs)): As.append(T.einsum('db,nb,nbs->nds', Ws[i + 1], Qs[i], As[-1])) bs.append(T.einsum('db,nb,nb->nd', Ws[i + 1], Qs[i], bs[-1])\ + vs[i + 1]) return As, bs
def compute_W_derivative(lhs, rhs, Ws, Qs, l): L = len(Qs) backward_As = [rhs] for i in range(0, l): backward_As.append(T.einsum('na,as,ns->na', Qs[i], Ws[i], backward_As[-1])) forward_As = [lhs] for i in range(l, L): forward_As.append(T.einsum('ns,sb,nb->nb', forward_As[-1], Ws[- i], Qs[-1])) return T.einsum('na,nb->nab', forward_As, backward_As)
def get_forward(Ws, Qs): """this function gives the slope matrix that forwards any pre activation of layer l to the output layer which is :: W^{L}Q^{L}_{\omega}W^{\ell}Q^{\ell} for the \ell element of the returned list. For the first one, is returns the entire A_{\omega} and for the last one it is the identity matrix """ N = Qs[-1].shape[0] L = len(Qs) forward = [T.identity(Ws[-1].shape[0]) * T.ones((N, 1, 1))] for i in range(L): forward.append(T.einsum('ndb,bs,ns->nds', forward[-1], Ws[- 1 - i], Qs[- 1 - i])) return forward[::-1]
def create_fns(input, in_signs, Ds, x, m0, m1, m2, batch_in_signs, alpha=0.1, sigma=1, sigma_x=1, lr=0.0002): cumulative_units = np.concatenate([[0], np.cumsum(Ds[:-1])]) BS = batch_in_signs.shape[0] Ws = [ T.Variable(sj.initializers.glorot((j, i)) * sigma) for j, i in zip(Ds[1:], Ds[:-1]) ] bs = [T.Variable(sj.initializers.he((j,)) * sigma) for j in Ds[1:-1]]\ + [T.Variable(T.zeros((Ds[-1],)))] A_w = [T.eye(Ds[0])] B_w = [T.zeros(Ds[0])] A_q = [T.eye(Ds[0])] B_q = [T.zeros(Ds[0])] batch_A_q = [T.eye(Ds[0]) * T.ones((BS, 1, 1))] batch_B_q = [T.zeros((BS, Ds[0]))] maps = [input] signs = [] masks = [T.ones(Ds[0])] in_masks = T.where(T.concatenate([T.ones(Ds[0]), in_signs]) > 0, 1., alpha) batch_in_masks = T.where( T.concatenate([T.ones((BS, Ds[0])), batch_in_signs], 1) > 0, 1., alpha) for w, b in zip(Ws[:-1], bs[:-1]): pre_activation = T.matmul(w, maps[-1]) + b signs.append(T.sign(pre_activation)) masks.append(T.where(pre_activation > 0, 1., alpha)) maps.append(pre_activation * masks[-1]) maps.append(T.matmul(Ws[-1], maps[-1]) + bs[-1]) # compute per region A and B for start, end, w, b, m in zip(cumulative_units[:-1], cumulative_units[1:], Ws, bs, masks): A_w.append(T.matmul(w * m, A_w[-1])) B_w.append(T.matmul(w * m, B_w[-1]) + b) A_q.append(T.matmul(w * in_masks[start:end], A_q[-1])) B_q.append(T.matmul(w * in_masks[start:end], B_q[-1]) + b) batch_A_q.append( T.matmul(w * batch_in_masks[:, None, start:end], batch_A_q[-1])) batch_B_q.append((w * batch_in_masks[:, None, start:end]\ * batch_B_q[-1][:, None, :]).sum(2) + b) batch_B_q = batch_B_q[-1] batch_A_q = batch_A_q[-1] signs = T.concatenate(signs) inequalities = T.hstack( [T.concatenate(B_w[1:-1])[:, None], T.vstack(A_w[1:-1])]) * signs[:, None] inequalities_code = T.hstack( [T.concatenate(B_q[1:-1])[:, None], T.vstack(A_q[1:-1])]) * in_signs[:, None] #### loss log_sigma2 = T.Variable(sigma_x) sigma2 = T.exp(log_sigma2) Am1 = T.einsum('qds,nqs->nqd', batch_A_q, m1) Bm0 = T.einsum('qd,nq->nd', batch_B_q, m0) B2m0 = T.einsum('nq,qd->n', m0, batch_B_q**2) AAm2 = T.einsum('qds,qdu,nqup->nsp', batch_A_q, batch_A_q, m2) inner = -(x * (Am1.sum(1) + Bm0)).sum(1) + (Am1 * batch_B_q).sum((1, 2)) loss_2 = (x**2).sum(1) + B2m0 + T.trace(AAm2, axis1=1, axis2=2).squeeze() loss_z = T.trace(m2.sum(1), axis1=1, axis2=2).squeeze() cst = 0.5 * (Ds[0] + Ds[-1]) * T.log(2 * np.pi) loss = cst + 0.5 * Ds[-1] * log_sigma2 + inner / sigma2\ + 0.5 * loss_2 / sigma2 + 0.5 * loss_z mean_loss = loss.mean() adam = sj.optimizers.NesterovMomentum(mean_loss, Ws + bs, lr, 0.9) train_f = sj.function(batch_in_signs, x, m0, m1, m2, outputs=mean_loss, updates=adam.updates) f = sj.function(input, outputs=[maps[-1], A_w[-1], B_w[-1], inequalities, signs]) g = sj.function(in_signs, outputs=[A_q[-1], B_q[-1]]) all_g = sj.function(in_signs, outputs=inequalities_code) h = sj.function(input, outputs=maps[-1]) return f, g, h, all_g, train_f, sigma2
def create_fns(batch_size, R, Ds, seed, leakiness=0.1, lr=0.0002, scaler=1, var_x=1): alpha = T.Placeholder((1,), 'float32') x = T.Placeholder((Ds[0],), 'float32') X = T.Placeholder((batch_size, Ds[-1]), 'float32') signs = T.Placeholder((np.sum(Ds[1:-1]),), 'float32') SIGNS = T.Placeholder((R, np.sum(Ds[1:-1])), 'float32') m0 = T.Placeholder((batch_size, R), 'float32') m1 = T.Placeholder((batch_size, R, Ds[0]), 'float32') m2 = T.Placeholder((batch_size, R, Ds[0], Ds[0]), 'float32') Ws, vs = init_weights(Ds, seed, scaler) Ws = [T.Variable(w, name='W' + str(l)) for l, w in enumerate(Ws)] vs = [T.Variable(v, name='v' + str(l)) for l, v in enumerate(vs)] var_x = T.Variable(T.ones(Ds[-1]) * var_x) var_z = T.Variable(T.ones(Ds[0])) # create the placeholders Ws_ph = [T.Placeholder(w.shape, w.dtype) for w in Ws] vs_ph = [T.Placeholder(v.shape, v.dtype) for v in vs] var_x_ph = T.Placeholder(var_x.shape, var_x.dtype) ############################################################################ # Compute the output of g(x) ############################################################################ maps = [x] xsigns = [] masks = [] for w, v in zip(Ws[:-1], vs[:-1]): pre_activation = T.matmul(w, maps[-1]) + v xsigns.append(T.sign(pre_activation)) masks.append(relu_mask(pre_activation, leakiness)) maps.append(pre_activation * masks[-1]) xsigns = T.concatenate(xsigns) maps.append(T.matmul(Ws[-1], maps[-1]) + vs[-1]) ############################################################################ # compute the masks and then the per layer affine mappings ############################################################################ cumulative_units = np.cumsum([0] + Ds[1:]) xqs = relu_mask([xsigns[None, cumulative_units[i]:cumulative_units[i + 1]] for i in range(len(Ds) - 2)], leakiness) qs = relu_mask([signs[None, cumulative_units[i]:cumulative_units[i + 1]] for i in range(len(Ds) - 2)], leakiness) Qs = relu_mask([SIGNS[:, cumulative_units[i]:cumulative_units[i + 1]] for i in range(len(Ds) - 2)], leakiness) Axs, bxs = get_Abs(Ws, vs, xqs) Aqs, bqs = get_Abs(Ws, vs, qs) AQs, bQs = get_Abs(Ws, vs, Qs) all_bxs = T.hstack(bxs[:-1]).transpose() all_Axs = T.hstack(Axs[:-1])[0] all_bqs = T.hstack(bqs[:-1]).transpose() all_Aqs = T.hstack(Aqs[:-1])[0] x_inequalities = T.hstack([all_Axs, all_bxs]) * xsigns[:, None] q_inequalities = T.hstack([all_Aqs, all_bqs]) * signs[:, None] ############################################################################ # loss (E-step NLL) ############################################################################ Bm0 = T.einsum('nd,Nn->Nd', bQs[-1], m0) B2m0 = T.einsum('nd,Nn->Nd', bQs[-1] ** 2, m0) Am1 = T.einsum('nds,Nns->Nd', AQs[-1], m1) ABm1 = T.einsum('nds,nd,Nns->Nd', AQs[-1], bQs[-1], m1) Am2ATdiag = T.diagonal(T.einsum('nds,Nnsc,npc->Ndp', AQs[-1], m2, AQs[-1]), axis1=1, axis2=2) xAm1Bm0 = X * (Am1 + Bm0) M2diag = T.diagonal(m2.sum(1), axis1=1, axis2=2) prior = sum([T.mean(w**2) for w in Ws], 0.) / cov_W\ + sum([T.mean(v**2) for v in vs[:-1]], 0.) / cov_b loss = - 0.5 * (T.log(var_x).sum() + T.log(var_z).sum()\ + (M2diag / var_z).sum(1).mean() + ((X ** 2 - 2 * xAm1Bm0 + B2m0\ + Am2ATdiag + 2 * ABm1) / var_x).sum(1).mean()) mean_loss = - (loss + 0.5 * prior) adam = sj.optimizers.SGD(mean_loss, 0.001, params=Ws + vs) ############################################################################ # update of var_x ############################################################################ update_varx = (X ** 2 - 2 * xAm1Bm0 + B2m0 + Am2ATdiag + 2 * ABm1).mean()\ * T.ones(Ds[-1]) update_varz = M2diag.mean() * T.ones(Ds[0]) ############################################################################ # update for biases IT IS DONE FOR ISOTROPIC COVARIANCE MATRIX ############################################################################ FQ = get_forward(Ws, Qs) update_vs = {} for i in range(len(vs)): if i < len(vs) - 1: # now we forward each bias to the x-space except the ith separated_bs = bQs[-1] - T.einsum('nds,s->nd', FQ[i], vs[i]) # compute the residual and apply sigma residual = (X[:, None, :] - separated_bs) * m0[:, :, None]\ - T.einsum('nds,Nns->Nnd', AQs[-1], m1) back_error = T.einsum('nds,nd->s', FQ[i], residual.mean(0)) whiten = T.einsum('ndc,nds,n->cs', FQ[i] , FQ[i], m0.mean(0))\ + T.eye(back_error.shape[0]) / (Ds[i] * cov_b) update_vs[vs[i]] = T.linalg.solve(whiten, back_error) else: back_error = (X - (Am1 + Bm0) + vs[-1]) update_vs[vs[i]] = back_error.mean(0) ############################################################################ # update for slopes IT IS DONE FOR ISOTROPIC COVARIANCE MATRIX ############################################################################ update_Ws = {} for i in range(len(Ws)): U = T.einsum('nds,ndc->nsc', FQ[i], FQ[i]) if i == 0: V = m2.mean(0) else: V1 = T.einsum('nd,nq,Nn->ndq', bQs[i-1], bQs[i-1], m0) V2 = T.einsum('nds,nqc,Nnsc->ndq', AQs[i-1], AQs[i-1], m2) V3 = T.einsum('nds,nq,Nns->ndq', AQs[i-1], bQs[i-1], m1) Q = T.einsum('nd,nq->ndq', Qs[i - 1], Qs[i - 1]) V = Q * (V1 + V2 + V3 + V3.transpose((0, 2, 1))) / batch_size whiten = T.stack([T.kron(U[n], V[n]) for n in range(V.shape[0])]).sum(0) whiten = whiten + T.eye(whiten.shape[-1]) / (Ds[i]*Ds[i+1]*cov_W) # compute the residual (bottom up) if i == len(Ws) - 1: bottom_up = (X[:, None, :] - vs[-1]) else: if i == 0: residual = (X[:, None, :] - bQs[-1]) else: residual = (X[:, None, :] - bQs[-1]\ + T.einsum('nds,ns->nd', FQ[i - 1], bQs[i-1])) bottom_up = T.einsum('ndc,Nnd->Nnc', FQ[i], residual) # compute the top down vector if i == 0: top_down = m1 else: top_down = Qs[i - 1] * (T.einsum('nds,Nns->Nnd', AQs[i - 1], m1) +\ T.einsum('nd,Nn->Nnd', bQs[i - 1], m0)) vector = T.einsum('Nnc,Nns->cs', bottom_up, top_down) / batch_size condition = T.diagonal(whiten) update_W = T.linalg.solve(whiten, vector.reshape(-1)).reshape(Ws[i].shape) update_Ws[Ws[i]] = update_W ############################################################################ # create the io functions ############################################################################ params = sj.function(outputs = Ws + vs + [var_x]) ll = T.Placeholder((), 'int32') selector = T.one_hot(ll, len(vs)) for i in range(len(vs)): update_vs[vs[i]] = ((1 - alpha) * vs[i] + alpha * update_vs[vs[i]])\ * selector[i] + vs[i] * (1 - selector[i]) for i in range(len(Ws)): update_Ws[Ws[i]] = ((1 - alpha) * Ws[i] + alpha * update_Ws[Ws[i]])\ * selector[i] + Ws[i] * (1 - selector[i]) output = {'train':sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss, updates=adam.updates), 'update_var':sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss, updates = {var_x: update_varx}), 'update_vs':sj.function(alpha, ll, SIGNS, X, m0, m1, m2, outputs=mean_loss, updates = update_vs), 'loss':sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss), 'update_Ws':sj.function(alpha, ll, SIGNS, X, m0, m1, m2, outputs=mean_loss, updates = update_Ws), 'signs2Ab': sj.function(signs, outputs=[Aqs[-1][0], bqs[-1][0]]), 'signs2ineq': sj.function(signs, outputs=q_inequalities), 'g': sj.function(x, outputs=maps[-1]), 'input2all': sj.function(x, outputs=[maps[-1], Axs[-1][0], bxs[-1][0], x_inequalities, xsigns]), 'get_nll': sj.function(SIGNS, X, m0, m1, m2, outputs=mean_loss), 'assign': sj.function(*Ws_ph, *vs_ph, var_x_ph, updates=dict(zip(Ws + vs + [var_x], Ws_ph + vs_ph + [var_x_ph]))), 'varx': sj.function(outputs=var_x), 'prior': sj.function(outputs=prior), 'varz': sj.function(outputs=var_z), 'params': params, # 'probed' : sj.function(SIGNS, X, m0, m1, m2, outputs=probed), 'input2signs': sj.function(x, outputs=xsigns), 'S' : Ds[0], 'D': Ds[-1], 'R': R, 'model': 'EM', 'L':len(Ds)-1, 'kwargs': {'batch_size': batch_size, 'Ds':Ds, 'seed':seed, 'leakiness':leakiness, 'lr':lr, 'scaler':scaler}} def sample(n): samples = [] for i in range(n): samples.append(output['g'](np.random.randn(Ds[0]))) return np.array(samples) output['sample'] = sample return output