def test_WGate(): nqubits = 2 basis_states = superposition_basis(nqubits) assert qapply(WGate(nqubits)*basis_states) == basis_states expected = ((2/sqrt(pow(2, nqubits)))*basis_states) - IntQubit(1, nqubits) assert qapply(WGate(nqubits)*IntQubit(1, nqubits)) == expected
def test_RaisingOp(): assert Dagger(ad) == a assert Commutator(ad, a).doit() == Integer(-1) assert Commutator(ad, N).doit() == Integer(-1)*ad assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand() assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand() assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand() assert ad.rewrite('xp').doit() == \ (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X) assert ad.hilbert_space == ComplexSpace(S.Infinity) for i in range(ndim - 1): assert ad_rep_sympy[i + 1,i] == sqrt(i + 1) if not np: skip("numpy not installed or Python too old.") ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy') for i in range(ndim - 1): assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1)) if not np: skip("numpy not installed or Python too old.") if not scipy: skip("scipy not installed.") else: sparse = scipy.sparse ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil') for i in range(ndim - 1): assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1)) assert ad_rep_numpy.dtype == 'float64' assert ad_rep_scipy.dtype == 'float64'
def test_CMod(): assert qapply(CMod(4, 2, 2)*Qubit(0, 0, 1, 0, 0, 0, 0, 0)) == \ Qubit(0, 0, 1, 0, 0, 0, 0, 0) assert qapply(CMod(5, 5, 7)*Qubit(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)) == \ Qubit(0, 0, 1, 0, 0, 0, 0, 0, 1, 0) assert qapply(CMod(3, 2, 3)*Qubit(0, 1, 0, 0, 0, 0)) == \ Qubit(0, 1, 0, 0, 0, 1)
def period_find(a, N): """Finds the period of a in modulo N arithmetic This is quantum part of Shor's algorithm.It takes two registers, puts first in superposition of states with Hadamards so: ``|k>|0>`` with k being all possible choices. It then does a controlled mod and a QFT to determine the order of a. """ epsilon = .5 #picks out t's such that maintains accuracy within epsilon t = int(2*math.ceil(log(N, 2))) # make the first half of register be 0's |000...000> start = [0 for x in range(t)] #Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0> factor = 1/sqrt(2**t) qubits = 0 for i in range(2**t): qbitArray = arr(i, t) + start qubits = qubits + Qubit(*qbitArray) circuit = (factor*qubits).expand() #Controlled second half of register so that we have: # |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n> circuit = CMod(t, a, N)*circuit #will measure first half of register giving one of the a**k%N's circuit = qapply(circuit) print "controlled Mod'd" for i in range(t): circuit = measure_partial_oneshot(circuit, i) # circuit = measure(i)*circuit # circuit = qapply(circuit) print "measured 1" #Now apply Inverse Quantum Fourier Transform on the second half of the register circuit = qapply(QFT(t, t*2).decompose()*circuit, floatingPoint=True) print "QFT'd" for i in range(t): circuit = measure_partial_oneshot(circuit, i + t) # circuit = measure(i+t)*circuit # circuit = qapply(circuit) print circuit if isinstance(circuit, Qubit): register = circuit elif isinstance(circuit, Mul): register = circuit.args[-1] else: register = circuit.args[-1].args[-1] print register n = 1 answer = 0 for i in range(len(register)/2): answer += n*register[i + t] n = n << 1 if answer == 0: raise OrderFindingException( "Order finder returned 0. Happens with chance %f" % epsilon) #turn answer into r using continued fractions g = getr(answer, 2**t, N) print g return g
def test_LoweringOp(): assert Dagger(a) == ad assert Commutator(a, ad).doit() == Integer(1) assert Commutator(a, N).doit() == a assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand() assert qapply(a*kz) == Integer(0) assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand() assert a().rewrite('xp').doit() == \ (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X)
def test_differential_operator(): x = Symbol('x') f = Function('f') d = DifferentialOperator(Derivative(f(x), x), f(x)) g = Wavefunction(x**2, x) assert qapply(d*g) == Wavefunction(2*x, x) assert d.expr == Derivative(f(x), x) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 2), f(x)) d = DifferentialOperator(Derivative(f(x), x, 2), f(x)) g = Wavefunction(x**3, x) assert qapply(d*g) == Wavefunction(6*x, x) assert d.expr == Derivative(f(x), x, 2) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 3), f(x)) d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) assert d.expr == 1/x*Derivative(f(x), x) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == \ DifferentialOperator(Derivative(1/x*Derivative(f(x), x), x), f(x)) assert qapply(d*g) == Wavefunction(3*x, x) # 2D cartesian Laplacian y = Symbol('y') d = DifferentialOperator(Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2), f(x, y)) w = Wavefunction(x**3*y**2 + y**3*x**2, x, y) assert d.expr == Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2) assert d.function == f(x, y) assert d.variables == (x, y) assert diff(d, x) == \ DifferentialOperator(Derivative(d.expr, x), f(x, y)) assert diff(d, y) == \ DifferentialOperator(Derivative(d.expr, y), f(x, y)) assert qapply(d*w) == Wavefunction(2*x**3 + 6*x*y**2 + 6*x**2*y + 2*y**3, x, y) # 2D polar Laplacian (th = theta) r, th = symbols('r th') d = DifferentialOperator(1/r*Derivative(r*Derivative(f(r, th), r), r) + 1/(r**2)*Derivative(f(r, th), th, 2), f(r, th)) w = Wavefunction(r**2*sin(th), r, (th, 0, pi)) assert d.expr == \ 1/r*Derivative(r*Derivative(f(r, th), r), r) + \ 1/(r**2)*Derivative(f(r, th), th, 2) assert d.function == f(r, th) assert d.variables == (r, th) assert diff(d, r) == \ DifferentialOperator(Derivative(d.expr, r), f(r, th)) assert diff(d, th) == \ DifferentialOperator(Derivative(d.expr, th), f(r, th)) assert qapply(d*w) == Wavefunction(3*sin(th), r, (th, 0, pi))
def test_RaisingOp(): assert Dagger(ad) == a assert Commutator(ad, a).doit() == Integer(-1) assert Commutator(ad, N).doit() == Integer(-1)*ad assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand() assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand() assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand() assert ad().rewrite('xp').doit() == \ (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X) assert ad.hilbert_space == ComplexSpace(S.Infinity)
def test_quantum_fourier(): assert QFT(0,3).decompose() == SwapGate(0,2)*HadamardGate(0)*CGate((0,), PhaseGate(1))\ *HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2))*HadamardGate(2) assert IQFT(0,3).decompose() == HadamardGate(2)*CGate((1,), RkGate(2,-2))*CGate((0,),RkGate(2,-3))\ *HadamardGate(1)*CGate((0,), RkGate(1,-2))*HadamardGate(0)*SwapGate(0,2) assert represent(QFT(0,3), nqubits=3)\ == Matrix([[exp(2*pi*I/8)**(i*j%8)/sqrt(8) for i in range(8)] for j in range(8)]) assert QFT(0,4).decompose() #non-trivial decomposition assert qapply(QFT(0,3).decompose()*Qubit(0,0,0)).expand() ==\ qapply(HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0,0,0)).expand()
def test_cgate(): """Test the general CGate.""" # Test single control functionality CNOTMatrix = Matrix( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix # Test multiple control bit functionality ToffoliGate = CGate((1, 2), XGate(0)) assert represent(ToffoliGate, nqubits=3) == \ Matrix( [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) ToffoliGate = CGate((3, 0), XGate(1)) assert qapply(ToffoliGate*Qubit('1001')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('1001'), nqubits=4)) assert qapply(ToffoliGate*Qubit('0000')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('0000'), nqubits=4)) CYGate = CGate(1, YGate(0)) CYGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0))) # Test 2 qubit controlled-Y gate decompose method. assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix CZGate = CGate(0, ZGate(1)) CZGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1))) assert qapply(CZGate*Qubit('11')) == -Qubit('11') assert matrix_to_qubit(represent(CZGate*Qubit('11'), nqubits=2)) == \ -Qubit('11') # Test 2 qubit controlled-Z gate decompose method. assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix CPhaseGate = CGate(0, PhaseGate(1)) assert qapply(CPhaseGate*Qubit('11')) == \ I*Qubit('11') assert matrix_to_qubit(represent(CPhaseGate*Qubit('11'), nqubits=2)) == \ I*Qubit('11') # Test that the dagger, inverse, and power of CGate is evaluated properly assert Dagger(CZGate) == CZGate assert pow(CZGate, 1) == Dagger(CZGate) assert Dagger(CZGate) == CZGate.inverse() assert Dagger(CPhaseGate) != CPhaseGate assert Dagger(CPhaseGate) == CPhaseGate.inverse() assert Dagger(CPhaseGate) == pow(CPhaseGate, -1) assert pow(CPhaseGate, -1) == CPhaseGate.inverse()
def test_identity(): I = IdentityOperator() O = Operator("O") assert isinstance(I, IdentityOperator) assert isinstance(I, Operator) assert I.inv() == I assert Dagger(I) == I assert qapply(I * O) == O assert qapply(O * I) == O for n in [2, 3, 5]: assert represent(IdentityOperator(n)) == eye(n)
def test_UGate(): a, b, c, d = symbols("a,b,c,d") uMat = Matrix([[a, b], [c, d]]) # Test basic case where gate exists in 1-qubit space u1 = UGate((0,), uMat) assert represent(u1, nqubits=1) == uMat assert qapply(u1 * Qubit("0")) == a * Qubit("0") + c * Qubit("1") assert qapply(u1 * Qubit("1")) == b * Qubit("0") + d * Qubit("1") # Test case where gate exists in a larger space u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep * qubit_to_matrix(IntQubit(i, 2)) == qubit_to_matrix(qapply(u2 * IntQubit(i, 2)))
def test_superposition_of_states(): assert qapply(CNOT(0, 1)*HadamardGate(0)*(1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10'))).expand() == (Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2) assert matrix_to_qubit(represent(CNOT(0, 1)*HadamardGate(0) *(1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10')), nqubits=2)) == \ (Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2)
def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): return self._apply_operator(state, **options) # state is a linear combination of states return qapply(self*state).rewrite(orig_basis)
def test_Hamiltonian(): assert Commutator(H, N).doit() == Integer(0) assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand() assert H().rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2)) assert H().rewrite('xp').doit() == \ (Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2) assert H().rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2))
def test_NumberOp(): assert Commutator(N, ad).doit() == ad assert Commutator(N, a).doit() == Integer(-1)*a assert Commutator(N, H).doit() == Integer(0) assert qapply(N*k) == (k.n*k).expand() assert N().rewrite('a').doit() == ad*a assert N().rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2)
def test_apply_represent_equality(): gates = [ HadamardGate(int(3 * random.random())), XGate(int(3 * random.random())), ZGate(int(3 * random.random())), YGate(int(3 * random.random())), ZGate(int(3 * random.random())), PhaseGate(int(3 * random.random())), ] circuit = Qubit( int(random.random() * 2), int(random.random() * 2), int(random.random() * 2), int(random.random() * 2), int(random.random() * 2), int(random.random() * 2), ) for i in range(int(random.random() * 6)): circuit = gates[int(random.random() * 6)] * circuit mat = represent(circuit, nqubits=6) states = qapply(circuit) state_rep = matrix_to_qubit(mat) states = states.expand() state_rep = state_rep.expand() assert state_rep == states
def test_basic(): assert qapply(Jz*po) == hbar*po assert qapply(Jx*z) == hbar*po/sqrt(2) + hbar*mo/sqrt(2) assert qapply((Jplus + Jminus)*z/sqrt(2)) == hbar*po + hbar*mo assert qapply(Jz*(po + mo)) == hbar*po - hbar*mo assert qapply(Jz*po + Jz*mo) == hbar*po - hbar*mo assert qapply(Jminus*Jminus*po) == 2*hbar**2*mo assert qapply(Jplus**2*mo) == 2*hbar**2*po assert qapply(Jplus**2*Jminus**2*po) == 4*hbar**4*po
def test_ugate(): """Test the general UGate.""" a,b,c,d = symbols('abcd') uMat = Matrix([[a,b],[c,d]]) # Test basic case where gate exists in 1-qubit space u1 = UGate((0,), uMat) assert represent(u1, nqubits = 1) == uMat assert qapply(u1*Qubit('0')) == a*Qubit('0') + c*Qubit('1') assert qapply(u1*Qubit('1')) == b*Qubit('0') + d*Qubit('1') # Test case where gate exists in a larger space u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i,2)) ==\ qubit_to_matrix(qapply(u2*IntQubit(i,2)))
def test_cnot_gate(): """Test the CNOT gate.""" circuit = CNotGate(1,0) assert represent(circuit, nqubits=2) ==\ Matrix([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]) circuit = circuit*Qubit('111') assert matrix_to_qubit(represent(circuit, nqubits=3)) ==\ qapply(circuit)
def test_grover(): nqubits = 2 assert apply_grover(return_one_on_one, nqubits) == IntQubit(1, nqubits) nqubits = 4 basis_states = superposition_basis(nqubits) expected = (-13*basis_states)/64 + 264*IntQubit(2, nqubits)/256 assert apply_grover(return_one_on_two, 4) == qapply(expected)
def test_grover_iteration_2(): numqubits = 4 basis_states = superposition_basis(numqubits) v = OracleGate(numqubits, return_one_on_two) # After (pi/4)sqrt(pow(2, n)), IntQubit(2) should have highest prob # In this case, after around pi times (3 or 4) iterated = grover_iteration(basis_states, v) iterated = qapply(iterated) iterated = grover_iteration(iterated, v) iterated = qapply(iterated) iterated = grover_iteration(iterated, v) iterated = qapply(iterated) # In this case, probability was highest after 3 iterations # Probability of Qubit('0010') was 251/256 (3) vs 781/1024 (4) # Ask about measurement expected = (-13*basis_states)/64 + 264*IntQubit(2, numqubits)/256 assert qapply(expected) == iterated
def test_extra(): extra = z.dual * A * z assert qapply(Jz * po * extra) == hbar * po * extra assert qapply(Jx * z * extra) == (hbar * po / sqrt(2) + hbar * mo / sqrt(2)) * extra assert qapply((Jplus + Jminus) * z / sqrt(2) * extra) == hbar * po * extra + hbar * mo * extra assert qapply(Jz * (po + mo) * extra) == hbar * po * extra - hbar * mo * extra assert qapply(Jz * po * extra + Jz * mo * extra) == hbar * po * extra - hbar * mo * extra assert qapply(Jminus * Jminus * po * extra) == 2 * hbar ** 2 * mo * extra assert qapply(Jplus ** 2 * mo * extra) == 2 * hbar ** 2 * po * extra assert qapply(Jplus ** 2 * Jminus ** 2 * po * extra) == 4 * hbar ** 4 * po * extra
def test_swap_gate(): """Test the SWAP gate.""" swap_gate_matrix = Matrix(((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1))) assert represent(SwapGate(1, 0).decompose(), nqubits=2) == swap_gate_matrix assert qapply(SwapGate(1, 3) * Qubit("0010")) == Qubit("1000") nqubits = 4 for i in range(nqubits): for j in range(i): assert represent(SwapGate(i, j), nqubits=nqubits) == represent(SwapGate(i, j).decompose(), nqubits=nqubits)
def test_UGate_CGate_combo(): a, b, c, d = symbols("a,b,c,d") uMat = Matrix([[a, b], [c, d]]) cMat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, a, b], [0, 0, c, d]]) # Test basic case where gate exists in 1-qubit space. u1 = UGate((0,), uMat) cu1 = CGate(1, u1) assert represent(cu1, nqubits=2) == cMat assert qapply(cu1 * Qubit("10")) == a * Qubit("10") + c * Qubit("11") assert qapply(cu1 * Qubit("11")) == b * Qubit("10") + d * Qubit("11") assert qapply(cu1 * Qubit("01")) == Qubit("01") assert qapply(cu1 * Qubit("00")) == Qubit("00") # Test case where gate exists in a larger space. u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep * qubit_to_matrix(IntQubit(i, 2)) == qubit_to_matrix(qapply(u2 * IntQubit(i, 2)))
def test_cnot_gate(): """Test the CNOT gate.""" circuit = CNotGate(1, 0) assert represent(circuit, nqubits=2) == Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) circuit = circuit * Qubit("111") assert matrix_to_qubit(represent(circuit, nqubits=3)) == qapply(circuit) circuit = CNotGate(1, 0) assert Dagger(circuit) == circuit assert Dagger(Dagger(circuit)) == circuit assert circuit * circuit == 1
def test_identity(): I = IdentityOperator() O = Operator('O') x = Symbol("x") assert isinstance(I, IdentityOperator) assert isinstance(I, Operator) assert I * O == O assert O * I == O assert isinstance(I * I, IdentityOperator) assert isinstance(3 * I, Mul) assert isinstance(I * x, Mul) assert I.inv() == I assert Dagger(I) == I assert qapply(I * O) == O assert qapply(O * I) == O for n in [2, 3, 5]: assert represent(IdentityOperator(n)) == eye(n)
def test_measure_all(): assert measure_all(Qubit('11')) == [(Qubit('11'), 1)] state = Qubit('11') + Qubit('10') assert measure_all(state) == [(Qubit('10'), Rational(1, 2)), (Qubit('11'), Rational(1, 2))] state2 = Qubit('11')/sqrt(5) + 2*Qubit('00')/sqrt(5) assert measure_all(state2) == \ [(Qubit('00'), Rational(4, 5)), (Qubit('11'), Rational(1, 5))] # from issue #12585 assert measure_all(qapply(Qubit('0'))) == [(Qubit('0'), 1)]
def test_ugate_cgate_combo(): """Test a UGate/CGate combination.""" a,b,c,d = symbols('abcd') uMat = Matrix([[a,b],[c,d]]) cMat = Matrix([[1,0,0,0],[0,1,0,0],[0,0,a,b],[0,0,c,d]]) # Test basic case where gate exists in 1-qubit space. u1 = UGate((0,), uMat) cu1 = CGate(1, u1) assert represent(cu1, nqubits = 2) == cMat assert qapply(cu1*Qubit('10')) == a*Qubit('10') + c*Qubit('11') assert qapply(cu1*Qubit('11')) == b*Qubit('10') + d*Qubit('11') assert qapply(cu1*Qubit('01')) == Qubit('01') assert qapply(cu1*Qubit('00')) == Qubit('00') # Test case where gate exists in a larger space. u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i,2)) ==\ qubit_to_matrix(qapply(u2*IntQubit(i,2)))
def test_NumberOp(): assert Commutator(N, ad).doit() == ad assert Commutator(N, a).doit() == Integer(-1)*a assert Commutator(N, H).doit() == Integer(0) assert qapply(N*k) == (k.n*k).expand() assert N.rewrite('a').doit() == ad*a assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*( Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2) assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2) for i in range(ndim): assert N_rep[i,i] == i assert N_rep == ad_rep_sympy*a_rep
def test_cgate(): """Test the general CGate.""" # Test single control functionality CNOTMatrix = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix # Test multiple control bit functionality ToffoliGate = CGate((1, 2), XGate(0)) assert represent(ToffoliGate, nqubits=3) == Matrix( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ] ) ToffoliGate = CGate((3, 0), XGate(1)) assert qapply(ToffoliGate * Qubit("1001")) == matrix_to_qubit(represent(ToffoliGate * Qubit("1001"), nqubits=4)) assert qapply(ToffoliGate * Qubit("0000")) == matrix_to_qubit(represent(ToffoliGate * Qubit("0000"), nqubits=4)) CYGate = CGate(1, YGate(0)) CYGate_matrix = Matrix(((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0))) # Test 2 qubit controlled-Y gate decompose method. assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix CZGate = CGate(0, ZGate(1)) CZGate_matrix = Matrix(((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1))) assert qapply(CZGate * Qubit("11")) == -Qubit("11") assert matrix_to_qubit(represent(CZGate * Qubit("11"), nqubits=2)) == -Qubit("11") # Test 2 qubit controlled-Z gate decompose method. assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix CPhaseGate = CGate(0, PhaseGate(1)) assert qapply(CPhaseGate * Qubit("11")) == I * Qubit("11") assert matrix_to_qubit(represent(CPhaseGate * Qubit("11"), nqubits=2)) == I * Qubit("11")
def test_dagger(): lhs = Dagger(Qubit(0)) * Dagger(H(0)) rhs = Dagger(Qubit(1)) / sqrt(2) + Dagger(Qubit(0)) / sqrt(2) assert qapply(lhs, dagger=True) == rhs
def test_issue_6073(): x, y = symbols("x y", commutative=False) A = Ket(x, y) B = Operator("B") assert qapply(A) == A assert qapply(A.dual * B) == A.dual * B
def test_issue3044(): expr1 = TensorProduct(Jz * JzKet(S(2), S.NegativeOne) / sqrt(2), Jz * JzKet(S.Half, S.Half)) result = Mul(S.NegativeOne, Rational(1, 4), 2**S.Half, hbar**2) result *= TensorProduct(JzKet(2, -1), JzKet(S.Half, S.Half)) assert qapply(expr1) == result
def test_density(): d = Density([Jz * mo, 0.5], [Jz * po, 0.5]) assert qapply(d) == Density([-hbar * mo, 0.5], [hbar * po, 0.5])
def test_innerproduct(): assert qapply(po.dual * Jz * po, ip_doit=False) == hbar * (po.dual * po) assert qapply(po.dual * Jz * po) == hbar
def test_zero(): assert qapply(0) == 0 assert qapply(Integer(0)) == 0
def test_operator_represent(): basis_kets = enumerate_states(operators_to_state(x_op), 1, 2) assert rep_expectation(x_op) == qapply(basis_kets[1].dual * x_op * basis_kets[0])
def _apply_operator_Qubit(self, qubits, **options): return qapply(self.decompose() * qubits)
def test_anticommutator(): assert qapply(AntiCommutator(Jz, Foo("F")) * po) == 2 * hbar * po assert qapply(AntiCommutator(Foo("F"), Jz) * po) == 2 * hbar * po
def test_grover_iteration_1(): numqubits = 2 basis_states = superposition_basis(numqubits) v = OracleGate(numqubits, return_one_on_one) expected = IntQubit(1, numqubits) assert qapply(grover_iteration(basis_states, v)) == expected
def test_commutator(): assert qapply(Commutator(Jx, Jy) * Jz * po) == I * hbar**3 * po assert qapply(Commutator(J2, Jz) * Jz * po) == 0 assert qapply(Commutator(Jz, Foo("F")) * po) == 0 assert qapply(Commutator(Foo("F"), Jz) * po) == 0