def __new__(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], LoweredEq): # origin: LoweredEq(devito.LoweredEq, **kwargs) input_expr = args[0] expr = Eq.__new__(cls, *input_expr.args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i)) return expr elif len(args) == 1 and isinstance(args[0], Eq): # origin: LoweredEq(sympy.Eq) input_expr = expr = args[0] elif len(args) == 2: expr = Eq.__new__(cls, *args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.pop(i)) return expr else: raise ValueError("Cannot construct LoweredEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) # Well-defined dimension ordering ordering = dimension_sort(expr) # Analyze the expression mapper = detect_accesses(expr) oobs = detect_oobs(mapper) conditionals = [i for i in ordering if i.is_Conditional] # The iteration space is constructed so that information always flows # from an iteration to another (i.e., no anti-dependences are created) directions, _ = force_directions(detect_flow_directions(expr), lambda i: Any) iterators = build_iterators(mapper) intervals = build_intervals(Stencil.union(*mapper.values())) intervals = IntervalGroup(intervals, relations=ordering.relations) ispace = IterationSpace(intervals.zero(), iterators, directions) # The data space is relative to the computational domain. Note that we # are deliberately dropping the intervals ordering (by turning `intervals` # into a list), as this is irrelevant (even more: dangerous) for data spaces intervals = [i if i.dim in oobs else i.zero() for i in intervals] intervals += [Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions + conditionals] parts = {k: IntervalGroup(build_intervals(v)) for k, v in mapper.items() if k} dspace = DataSpace(intervals, parts) # Finally create the LoweredEq with all metadata attached expr = super(LoweredEq, cls).__new__(cls, expr.lhs, expr.rhs, evaluate=False) expr._is_Increment = getattr(input_expr, 'is_Increment', False) expr._dspace = dspace expr._ispace = ispace expr._conditionals = tuple(conditionals) expr._reads, expr._writes = detect_io(expr) return expr
def __new__(cls, *args, **kwargs): if len(args) == 1: # origin: ClusterizedEq(expr, **kwargs) input_expr = args[0] expr = Eq.__new__(cls, *input_expr.args, evaluate=False) for i in cls._state: v = kwargs[i] if i in kwargs else getattr(input_expr, i, None) setattr(expr, '_%s' % i, v) elif len(args) == 2: # origin: ClusterizedEq(lhs, rhs, **kwargs) expr = Eq.__new__(cls, *args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.pop(i)) else: raise ValueError("Cannot construct ClusterizedEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) return expr
def __new__(cls, *args, **kwargs): # Parse input if len(args) == 2: maybe_ispace = args[1] if isinstance(maybe_ispace, IterationSpace): input_expr = args[0] expr = Eq.__new__(cls, *input_expr.args, evaluate=False) expr.is_Increment = input_expr.is_Increment expr.ispace = maybe_ispace else: expr = Eq.__new__(cls, *args, evaluate=False) expr.ispace = kwargs['ispace'] expr.is_Increment = kwargs.get('is_Increment', False) else: raise ValueError("Cannot construct ClusterizedEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) return expr
def __new__(cls, *args, **kwargs): # Parse input if len(args) == 1: input_expr = args[0] assert type(input_expr) != LoweredEq assert isinstance(input_expr, Eq) elif len(args) == 2: # Reconstructing from existing Eq. E.g., we end up here after xreplace stamp = kwargs.pop('stamp') expr = Eq.__new__(cls, *args, evaluate=False) assert isinstance(stamp, Eq) expr.is_Increment = stamp.is_Increment expr.ispace = stamp.ispace return expr else: raise ValueError("Cannot construct LoweredEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) # Indexification expr = indexify(input_expr) # Apply caller-provided substitution subs = kwargs.get('subs') if subs is not None: expr = expr.xreplace(subs) # Well-defined dimension ordering ordering = dimension_sort(expr, key=lambda i: not i.is_Time) # Introduce space sub-dimensions if need to region = getattr(input_expr, '_region', DOMAIN) if region == INTERIOR: mapper = { i: SubDimension("%si" % i, i, 1, -1) for i in ordering if i.is_Space } expr = expr.xreplace(mapper) ordering = [mapper.get(i, i) for i in ordering] # Compute iteration space intervals, iterators = compute_intervals(expr) intervals = sorted(intervals, key=lambda i: ordering.index(i.dim)) directions, _ = compute_directions(expr, lambda i: Any) ispace = IterationSpace([i.negate() for i in intervals], iterators, directions) # Finally create the LoweredEq with all metadata attached expr = super(LoweredEq, cls).__new__(cls, expr.lhs, expr.rhs, evaluate=False) expr.is_Increment = getattr(input_expr, 'is_Increment', False) expr.ispace = ispace expr.dimensions = ordering expr.reads, expr.writes = detect_io(expr) return expr
def __new__(cls, *args, **kwargs): if len(args) == 2: # origin: ClusterizedEq(lhs, rhs, stamp=...) stamp = kwargs.pop('stamp') assert isinstance(stamp, ClusterizedEq) expr = Eq.__new__(cls, *args, evaluate=False) expr.is_Increment = stamp.is_Increment expr._ispace, expr._dspace = stamp.ispace, stamp.dspace elif len(args) == 3: # origin: ClusterizedEq(expr, ispace, dspace) input_expr, ispace, dspace = args assert isinstance(ispace, IterationSpace) and isinstance(dspace, DataSpace) expr = Eq.__new__(cls, *input_expr.args, evaluate=False) expr.is_Increment = input_expr.is_Increment expr._ispace, expr._dspace = ispace, dspace else: raise ValueError("Cannot construct ClusterizedEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) return expr
def __new__(cls, *args, **kwargs): if len(args) == 1: # origin: ClusterizedEq(expr, **kwargs) input_expr = args[0] expr = Eq.__new__(cls, *input_expr.args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i)) assert isinstance(expr.ispace, IterationSpace) assert isinstance(expr.dspace, DataSpace) elif len(args) == 2: # origin: ClusterizedEq(lhs, rhs, **kwargs) expr = Eq.__new__(cls, *args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.pop(i)) else: raise ValueError("Cannot construct ClusterizedEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) return expr
def __new__(cls, *args, **kwargs): if len(args) == 1: # origin: LoweredEq(expr) expr = input_expr = args[0] assert not isinstance(expr, LoweredEq) and isinstance(expr, Eq) elif len(args) == 2: # origin: LoweredEq(lhs, rhs, stamp=...) stamp = kwargs.pop('stamp') expr = Eq.__new__(cls, *args, evaluate=False) assert isinstance(stamp, Eq) expr.is_Increment = stamp.is_Increment expr._ispace, expr._dspace = stamp.ispace, stamp.dspace expr.reads, expr.writes = stamp.reads, stamp.writes return expr elif len(args) == 5: # origin: LoweredEq(expr, ispace, space) input_expr, ispace, dspace, reads, writes = args assert isinstance(ispace, IterationSpace) and isinstance( dspace, DataSpace) expr = Eq.__new__(cls, *input_expr.args, evaluate=False) expr.is_Increment = input_expr.is_Increment expr._ispace, expr._dspace = ispace, dspace expr.reads, expr.writes = reads, writes return expr else: raise ValueError("Cannot construct LoweredEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) # Well-defined dimension ordering ordering = dimension_sort(expr, key=lambda i: not i.is_Time) # Introduce space sub-dimensions if need to region = getattr(input_expr, '_region', DOMAIN) if region == INTERIOR: mapper = { i: SubDimension("%si" % i, i, 1, -1) for i in ordering if i.is_Space } expr = expr.xreplace(mapper) ordering = [mapper.get(i, i) for i in ordering] # Analyze data accesses mapper = detect_accesses(expr) oobs = detect_oobs(mapper) # The iteration space is constructed so that information always flows # from an iteration to another (i.e., no anti-dependences are created) directions, _ = force_directions(detect_flow_directions(expr), lambda i: Any) intervals, iterators = build_intervals(mapper) intervals = sorted(intervals, key=lambda i: ordering.index(i.dim)) ispace = IterationSpace([i.zero() for i in intervals], iterators, directions) # The data space is relative to the computational domain intervals = [i if i.dim in oobs else i.zero() for i in intervals] intervals += [ Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions ] parts = { k: IntervalGroup(Interval(i, min(j), max(j)) for i, j in v.items()) for k, v in mapper.items() } dspace = DataSpace(intervals, parts) # Finally create the LoweredEq with all metadata attached expr = super(LoweredEq, cls).__new__(cls, expr.lhs, expr.rhs, evaluate=False) expr.is_Increment = getattr(input_expr, 'is_Increment', False) expr._dspace = dspace expr._ispace = ispace expr.reads, expr.writes = detect_io(expr) return expr
def __new__(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], LoweredEq): # origin: LoweredEq(devito.LoweredEq, **kwargs) input_expr = args[0] expr = Eq.__new__(cls, *input_expr.args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i)) return expr elif len(args) == 1 and isinstance(args[0], Eq): # origin: LoweredEq(sympy.Eq) input_expr = expr = args[0] elif len(args) == 2: expr = Eq.__new__(cls, *args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.pop(i)) return expr else: raise ValueError("Cannot construct LoweredEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) # Well-defined dimension ordering ordering = dimension_sort(expr, key=lambda i: not i.is_Time) # Introduce space sub-dimensions if need to region = getattr(input_expr, '_region', DOMAIN) if region == INTERIOR: mapper = { i: SubDimension.middle("%si" % i, i, 1, 1) for i in ordering if i.is_Space } expr = expr.xreplace(mapper) for k, v in mapper.items(): ordering.insert(ordering.index(k) + 1, v) # Analyze the expression mapper = detect_accesses(expr) oobs = detect_oobs(mapper) # The iteration space is constructed so that information always flows # from an iteration to another (i.e., no anti-dependences are created) directions, _ = force_directions(detect_flow_directions(expr), lambda i: Any) iterators = build_iterators(mapper) intervals = build_intervals(Stencil.union(*mapper.values())) intervals = sorted(intervals, key=lambda i: ordering.index(i.dim)) ispace = IterationSpace([i.zero() for i in intervals], iterators, directions) # The data space is relative to the computational domain intervals = [i if i.dim in oobs else i.zero() for i in intervals] intervals += [ Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions ] parts = { k: IntervalGroup(build_intervals(v)) for k, v in mapper.items() if k } dspace = DataSpace(intervals, parts) # Finally create the LoweredEq with all metadata attached expr = super(LoweredEq, cls).__new__(cls, expr.lhs, expr.rhs, evaluate=False) expr._is_Increment = getattr(input_expr, 'is_Increment', False) expr._dspace = dspace expr._ispace = ispace expr._reads, expr._writes = detect_io(expr) return expr