Пример #1
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(sympy.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr)

        # Analyze the expression
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)
        conditionals = [i for i in ordering if i.is_Conditional]

        # The iteration space is constructed so that information always flows
        # from an iteration to another (i.e., no anti-dependences are created)
        directions, _ = force_directions(detect_flow_directions(expr), lambda i: Any)
        iterators = build_iterators(mapper)
        intervals = build_intervals(Stencil.union(*mapper.values()))
        intervals = IntervalGroup(intervals, relations=ordering.relations)
        ispace = IterationSpace(intervals.zero(), iterators, directions)

        # The data space is relative to the computational domain. Note that we
        # are deliberately dropping the intervals ordering (by turning `intervals`
        # into a list), as this is irrelevant (even more: dangerous) for data spaces
        intervals = [i if i.dim in oobs else i.zero() for i in intervals]
        intervals += [Interval(i, 0, 0) for i in ordering
                      if i not in ispace.dimensions + conditionals]
        parts = {k: IntervalGroup(build_intervals(v)) for k, v in mapper.items() if k}
        dspace = DataSpace(intervals, parts)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls, expr.lhs, expr.rhs, evaluate=False)
        expr._is_Increment = getattr(input_expr, 'is_Increment', False)
        expr._dspace = dspace
        expr._ispace = ispace
        expr._conditionals = tuple(conditionals)
        expr._reads, expr._writes = detect_io(expr)

        return expr
Пример #2
0
 def __new__(cls, *args, **kwargs):
     if len(args) == 1:
         # origin: ClusterizedEq(expr, **kwargs)
         input_expr = args[0]
         expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
         for i in cls._state:
             v = kwargs[i] if i in kwargs else getattr(input_expr, i, None)
             setattr(expr, '_%s' % i, v)
     elif len(args) == 2:
         # origin: ClusterizedEq(lhs, rhs, **kwargs)
         expr = Eq.__new__(cls, *args, evaluate=False)
         for i in cls._state:
             setattr(expr, '_%s' % i, kwargs.pop(i))
     else:
         raise ValueError("Cannot construct ClusterizedEq from args=%s "
                          "and kwargs=%s" % (str(args), str(kwargs)))
     return expr
Пример #3
0
 def __new__(cls, *args, **kwargs):
     # Parse input
     if len(args) == 2:
         maybe_ispace = args[1]
         if isinstance(maybe_ispace, IterationSpace):
             input_expr = args[0]
             expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
             expr.is_Increment = input_expr.is_Increment
             expr.ispace = maybe_ispace
         else:
             expr = Eq.__new__(cls, *args, evaluate=False)
             expr.ispace = kwargs['ispace']
             expr.is_Increment = kwargs.get('is_Increment', False)
     else:
         raise ValueError("Cannot construct ClusterizedEq from args=%s "
                          "and kwargs=%s" % (str(args), str(kwargs)))
     return expr
Пример #4
0
    def __new__(cls, *args, **kwargs):
        # Parse input
        if len(args) == 1:
            input_expr = args[0]
            assert type(input_expr) != LoweredEq
            assert isinstance(input_expr, Eq)
        elif len(args) == 2:
            # Reconstructing from existing Eq. E.g., we end up here after xreplace
            stamp = kwargs.pop('stamp')
            expr = Eq.__new__(cls, *args, evaluate=False)
            assert isinstance(stamp, Eq)
            expr.is_Increment = stamp.is_Increment
            expr.ispace = stamp.ispace
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Indexification
        expr = indexify(input_expr)

        # Apply caller-provided substitution
        subs = kwargs.get('subs')
        if subs is not None:
            expr = expr.xreplace(subs)

        # Well-defined dimension ordering
        ordering = dimension_sort(expr, key=lambda i: not i.is_Time)

        # Introduce space sub-dimensions if need to
        region = getattr(input_expr, '_region', DOMAIN)
        if region == INTERIOR:
            mapper = {
                i: SubDimension("%si" % i, i, 1, -1)
                for i in ordering if i.is_Space
            }
            expr = expr.xreplace(mapper)
            ordering = [mapper.get(i, i) for i in ordering]

        # Compute iteration space
        intervals, iterators = compute_intervals(expr)
        intervals = sorted(intervals, key=lambda i: ordering.index(i.dim))
        directions, _ = compute_directions(expr, lambda i: Any)
        ispace = IterationSpace([i.negate() for i in intervals], iterators,
                                directions)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             expr.rhs,
                                             evaluate=False)
        expr.is_Increment = getattr(input_expr, 'is_Increment', False)
        expr.ispace = ispace
        expr.dimensions = ordering
        expr.reads, expr.writes = detect_io(expr)

        return expr
Пример #5
0
 def __new__(cls, *args, **kwargs):
     if len(args) == 2:
         # origin: ClusterizedEq(lhs, rhs, stamp=...)
         stamp = kwargs.pop('stamp')
         assert isinstance(stamp, ClusterizedEq)
         expr = Eq.__new__(cls, *args, evaluate=False)
         expr.is_Increment = stamp.is_Increment
         expr._ispace, expr._dspace = stamp.ispace, stamp.dspace
     elif len(args) == 3:
         # origin: ClusterizedEq(expr, ispace, dspace)
         input_expr, ispace, dspace = args
         assert isinstance(ispace, IterationSpace) and isinstance(dspace, DataSpace)
         expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
         expr.is_Increment = input_expr.is_Increment
         expr._ispace, expr._dspace = ispace, dspace
     else:
         raise ValueError("Cannot construct ClusterizedEq from args=%s "
                          "and kwargs=%s" % (str(args), str(kwargs)))
     return expr
Пример #6
0
 def __new__(cls, *args, **kwargs):
     if len(args) == 1:
         # origin: ClusterizedEq(expr, **kwargs)
         input_expr = args[0]
         expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
         for i in cls._state:
             setattr(expr, '_%s' % i,
                     kwargs.get(i) or getattr(input_expr, i))
         assert isinstance(expr.ispace, IterationSpace)
         assert isinstance(expr.dspace, DataSpace)
     elif len(args) == 2:
         # origin: ClusterizedEq(lhs, rhs, **kwargs)
         expr = Eq.__new__(cls, *args, evaluate=False)
         for i in cls._state:
             setattr(expr, '_%s' % i, kwargs.pop(i))
     else:
         raise ValueError("Cannot construct ClusterizedEq from args=%s "
                          "and kwargs=%s" % (str(args), str(kwargs)))
     return expr
Пример #7
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1:
            # origin: LoweredEq(expr)
            expr = input_expr = args[0]
            assert not isinstance(expr, LoweredEq) and isinstance(expr, Eq)
        elif len(args) == 2:
            # origin: LoweredEq(lhs, rhs, stamp=...)
            stamp = kwargs.pop('stamp')
            expr = Eq.__new__(cls, *args, evaluate=False)
            assert isinstance(stamp, Eq)
            expr.is_Increment = stamp.is_Increment
            expr._ispace, expr._dspace = stamp.ispace, stamp.dspace
            expr.reads, expr.writes = stamp.reads, stamp.writes
            return expr
        elif len(args) == 5:
            # origin: LoweredEq(expr, ispace, space)
            input_expr, ispace, dspace, reads, writes = args
            assert isinstance(ispace, IterationSpace) and isinstance(
                dspace, DataSpace)
            expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
            expr.is_Increment = input_expr.is_Increment
            expr._ispace, expr._dspace = ispace, dspace
            expr.reads, expr.writes = reads, writes
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr, key=lambda i: not i.is_Time)

        # Introduce space sub-dimensions if need to
        region = getattr(input_expr, '_region', DOMAIN)
        if region == INTERIOR:
            mapper = {
                i: SubDimension("%si" % i, i, 1, -1)
                for i in ordering if i.is_Space
            }
            expr = expr.xreplace(mapper)
            ordering = [mapper.get(i, i) for i in ordering]

        # Analyze data accesses
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)

        # The iteration space is constructed so that information always flows
        # from an iteration to another (i.e., no anti-dependences are created)
        directions, _ = force_directions(detect_flow_directions(expr),
                                         lambda i: Any)
        intervals, iterators = build_intervals(mapper)
        intervals = sorted(intervals, key=lambda i: ordering.index(i.dim))
        ispace = IterationSpace([i.zero() for i in intervals], iterators,
                                directions)

        # The data space is relative to the computational domain
        intervals = [i if i.dim in oobs else i.zero() for i in intervals]
        intervals += [
            Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions
        ]
        parts = {
            k:
            IntervalGroup(Interval(i, min(j), max(j)) for i, j in v.items())
            for k, v in mapper.items()
        }
        dspace = DataSpace(intervals, parts)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             expr.rhs,
                                             evaluate=False)
        expr.is_Increment = getattr(input_expr, 'is_Increment', False)
        expr._dspace = dspace
        expr._ispace = ispace
        expr.reads, expr.writes = detect_io(expr)

        return expr
Пример #8
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i,
                        kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(sympy.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr, key=lambda i: not i.is_Time)

        # Introduce space sub-dimensions if need to
        region = getattr(input_expr, '_region', DOMAIN)
        if region == INTERIOR:
            mapper = {
                i: SubDimension.middle("%si" % i, i, 1, 1)
                for i in ordering if i.is_Space
            }
            expr = expr.xreplace(mapper)
            for k, v in mapper.items():
                ordering.insert(ordering.index(k) + 1, v)

        # Analyze the expression
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)

        # The iteration space is constructed so that information always flows
        # from an iteration to another (i.e., no anti-dependences are created)
        directions, _ = force_directions(detect_flow_directions(expr),
                                         lambda i: Any)
        iterators = build_iterators(mapper)
        intervals = build_intervals(Stencil.union(*mapper.values()))
        intervals = sorted(intervals, key=lambda i: ordering.index(i.dim))
        ispace = IterationSpace([i.zero() for i in intervals], iterators,
                                directions)

        # The data space is relative to the computational domain
        intervals = [i if i.dim in oobs else i.zero() for i in intervals]
        intervals += [
            Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions
        ]
        parts = {
            k: IntervalGroup(build_intervals(v))
            for k, v in mapper.items() if k
        }
        dspace = DataSpace(intervals, parts)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             expr.rhs,
                                             evaluate=False)
        expr._is_Increment = getattr(input_expr, 'is_Increment', False)
        expr._dspace = dspace
        expr._ispace = ispace
        expr._reads, expr._writes = detect_io(expr)

        return expr