コード例 #1
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
        def _get_angles(coords):
            base_shape = [int(dim) for dim in coords.shape]
            base_shape.pop(1)
            base_shape[-1] = 1

            coords_list = tf.unstack(coords, axis=1)

            def _get_angle_for_joint(joint_idx, parent_idx, angles):
                if parent_idx is None:  # joint_idx should be 0
                    parent_bone = K.constant(
                        np.concatenate([
                            np.ones(base_shape),
                            np.zeros(base_shape),
                            np.zeros(base_shape)
                        ],
                                       axis=-1))
                else:
                    parent_bone = coords_list[parent_idx] - coords_list[
                        joint_idx]

                for child_idx in body_graph[joint_idx]:
                    child_bone = coords_list[child_idx] - coords_list[joint_idx]
                    angle = quaternion_between(parent_bone, child_bone)
                    angle = quaternion_to_expmap(angle)
                    angles.append(angle)

                for child_idx in body_graph[joint_idx]:
                    angles = _get_angle_for_joint(child_idx, joint_idx, angles)

                return angles

            angles = _get_angle_for_joint(0, None, [])
            return K.stack(angles, axis=1)
コード例 #2
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
 def _diff_to_seq(args):
     diffs, start_pose = args
     diffs_list = tf.unstack(diffs, axis=2)
     poses = [start_pose]
     for p in range(diffs.shape[2]):
         poses.append(poses[p] + diffs_list[p])
     return K.stack(poses, axis=2)
コード例 #3
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
 def _get_bone_len(arg):
     bone_list = tf.unstack(arg[:, :, 0, :], axis=1)
     bones = [
         bone_list[j] - bone_list[i]
         for i, j in zip(members_from, members_to)
     ]
     bones = K.stack(bones, axis=1)
     return K.sqrt(K.sum(K.square(bones), axis=-1) + K.epsilon())
コード例 #4
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
 def _get_avg_bone_len(arg):
     bone_list = tf.unstack(arg[:, :, 0, :], axis=1)
     bones = [
         bone_list[j] - bone_list[i]
         for i, j in zip(members_from, members_to)
     ]
     bones = K.expand_dims(K.stack(bones, axis=1), axis=2)
     bone_len = K.sqrt(
         K.sum(K.square(bones), axis=-1, keepdims=True) + K.epsilon())
     return K.mean(bone_len, axis=1, keepdims=True)
コード例 #5
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
        def _get_coords(args):
            rotmat, bone_len = args
            rotmat_list = tf.unstack(rotmat, axis=1)
            bone_len_list = tf.unstack(bone_len, axis=1)

            base_shape = [int(d) for d in rotmat.shape]
            base_shape.pop(1)
            base_shape[-2] = 1
            base_shape[-1] = 1
            bone_idcs = {
                idx_tup: i
                for i, idx_tup in enumerate(
                    [idx_tup for idx_tup in zip(members_from, members_to)])
            }

            def _get_coords_for_joint(joint_idx, parent_idx, child_angle_idx,
                                      coords):
                if parent_idx is None:  # joint_idx should be 0
                    coords[joint_idx] = K.zeros(base_shape[:-2] + [3, 1])
                    parent_bone = K.constant(
                        np.concatenate([
                            np.ones(base_shape),
                            np.zeros(base_shape),
                            np.zeros(base_shape)
                        ],
                                       axis=-2))
                else:
                    parent_bone = coords[parent_idx] - coords[joint_idx]
                    parent_bone_norm = K.sqrt(
                        K.sum(K.square(parent_bone), axis=-2, keepdims=True) +
                        K.epsilon())
                    parent_bone = parent_bone / parent_bone_norm

                for child_idx in body_graph[joint_idx]:
                    child_bone = tf.matmul(rotmat_list[child_angle_idx],
                                           parent_bone)
                    child_bone_idx = bone_idcs[(joint_idx, child_idx)]
                    child_bone = child_bone * K.reshape(
                        bone_len_list[child_bone_idx],
                        (child_bone.shape[0], 1, 1, 1))
                    coords[child_idx] = child_bone + coords[joint_idx]
                    child_angle_idx += 1

                for child_idx in body_graph[joint_idx]:
                    child_angle_idx, coords = _get_coords_for_joint(
                        child_idx, joint_idx, child_angle_idx, coords)

                return child_angle_idx, coords

            child_angle_idx, coords = _get_coords_for_joint(0, None, 0, {})
            coords = K.stack([t for i, t in sorted(coords.iteritems())],
                             axis=1)
            coords = K.squeeze(coords, axis=-1)
            return coords
コード例 #6
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
 def _get_rotation(arg):
     coords_list = tf.unstack(arg[:, :, 0, :], axis=1)
     torso_rot = tf.cross(
         coords_list[left_shoulder] - coords_list[hip],
         coords_list[right_shoulder] - coords_list[hip])
     side_rot = K.reshape(
         tf.cross(coords_list[head_top] - coords_list[hip], torso_rot),
         base_shape)
     theta_diff = (
         (np.pi / 2) - tf.atan2(side_rot[..., 1], side_rot[..., 0])) / 2
     cos_theta_diff = tf.cos(theta_diff)
     sin_theta_diff = tf.sin(theta_diff)
     zeros_theta = K.zeros_like(sin_theta_diff)
     return K.stack(
         [cos_theta_diff, zeros_theta, zeros_theta, sin_theta_diff],
         axis=-1)
コード例 #7
0
    def call(self, inputs, **kwargs):
        input_shape = K.int_shape(inputs)
        tensor_input_shape = K.shape(inputs)

        # Prepare broadcasting shape.
        reduction_axes = list(range(len(input_shape)))
        del reduction_axes[self.axis]
        broadcast_shape = [1] * len(input_shape)
        broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
        broadcast_shape.insert(1, self.groups)

        reshape_group_shape = K.shape(inputs)
        group_axes = [reshape_group_shape[i] for i in range(len(input_shape))]
        group_axes[self.axis] = input_shape[self.axis] // self.groups
        group_axes.insert(1, self.groups)

        # reshape inputs to new group shape
        group_shape = [group_axes[0], self.groups] + group_axes[2:]
        group_shape = K.stack(group_shape)
        inputs = K.reshape(inputs, group_shape)

        group_reduction_axes = list(range(len(group_axes)))
        mean, variance = _moments(inputs,
                                  group_reduction_axes[2:],
                                  keep_dims=True)
        inputs = (inputs - mean) / (K.sqrt(variance + self.epsilon))

        # prepare broadcast shape
        inputs = K.reshape(inputs, group_shape)

        outputs = inputs

        # In this case we must explicitly broadcast all parameters.
        if self.scale:
            broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
            outputs = outputs * broadcast_gamma

        if self.center:
            broadcast_beta = K.reshape(self.beta, broadcast_shape)
            outputs = outputs + broadcast_beta

        # finally we reshape the output back to the input shape
        outputs = K.reshape(outputs, tensor_input_shape)

        return outputs
コード例 #8
0
ファイル: atari_nets.py プロジェクト: spring01/hcdrl
def _atari_state_feature_net(observation_space, net_name):
    num_frames = len(observation_space.spaces)
    height, width = observation_space.spaces[0].shape
    input_shape = height, width, num_frames

    # input state
    state = Input(shape=input_shape)

    # convolutional layers
    conv1_32 = Conv2D(32, (8, 8), strides=(4, 4), activation='relu')
    conv2_64 = Conv2D(64, (4, 4), strides=(2, 2), activation='relu')
    conv3_64 = Conv2D(64, (3, 3), strides=(1, 1), activation='relu')

    # if recurrent net then change input shape
    if 'lstm' in net_name or 'gru' in net_name:
        # recurrent net
        lambda_perm_state = lambda x: K.permute_dimensions(x, [0, 3, 1, 2])
        perm_state = Lambda(lambda_perm_state)(state)
        dist_state = Lambda(lambda x: K.stack([x], axis=4))(perm_state)

        # extract features with `TimeDistributed` wrapped convolutional layers
        dist_conv1 = TimeDistributed(conv1_32)(dist_state)
        dist_conv2 = TimeDistributed(conv2_64)(dist_conv1)
        dist_convf = TimeDistributed(conv3_64)(dist_conv2)
        feature = TimeDistributed(Flatten())(dist_convf)

        # specify net type for the following layer
        if 'lstm' in net_name:
            net = LSTM
        elif 'gru' in net_name:
            net = GRU
    elif 'fc' in net_name:
        # fully connected net
        # extract features with convolutional layers
        conv1 = conv1_32(state)
        conv2 = conv2_64(conv1)
        convf = conv3_64(conv2)
        feature = Flatten()(convf)

        # specify net type for the following layer
        net = Dense
    else:
        raise ValueError('`net_name` is not recognized')

    return state, feature, net
コード例 #9
0
ファイル: seq_transform.py プロジェクト: tobytoy/MotionGAN
        def _get_angles_mask(coord_masks):
            base_shape = [int(dim) for dim in coord_masks.shape]
            base_shape.pop(1)
            base_shape[-1] = 1

            coord_masks_list = tf.unstack(coord_masks, axis=1)

            def _get_angle_mask_for_joint(joint_idx, angles_mask):
                for child_idx in body_graph[joint_idx]:
                    angles_mask.append(coord_masks_list[child_idx]
                                       )  # * coord_masks_list[joint_idx]

                for child_idx in body_graph[joint_idx]:
                    angles_mask = _get_angle_mask_for_joint(
                        child_idx, angles_mask)

                return angles_mask

            angles_mask = _get_angle_mask_for_joint(0, [])
            return K.stack(angles_mask, axis=1)