def sequence_numeric_column( key, shape=(1,), default_value=0., dtype=dtypes.float32, normalizer_fn=None): """Returns a feature column that represents sequences of numeric data. Example: ```python temperature = sequence_numeric_column('temperature') columns = [temperature] features = tf.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatureLayer(columns) input_layer, sequence_length = sequence_feature_layer(features) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length) ``` Args: key: A unique string identifying the input features. shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values. default_value: A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`. dtype: The type of values. normalizer_fn: If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. Returns: A `SequenceNumericColumn`. Raises: TypeError: if any dimension in shape is not an int. ValueError: if any dimension in shape is not a positive integer. ValueError: if `dtype` is not convertible to `tf.float32`. """ shape = fc_old._check_shape(shape=shape, key=key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) if normalizer_fn is not None and not callable(normalizer_fn): raise TypeError( 'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn)) return SequenceNumericColumn( key, shape=shape, default_value=default_value, dtype=dtype, normalizer_fn=normalizer_fn)
def sequence_numeric_column(key, shape=(1, ), default_value=0., dtype=dtypes.float32, normalizer_fn=None): """Returns a feature column that represents sequences of numeric data. Example: ```python temperature = sequence_numeric_column('temperature') columns = [temperature] features = tf.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatureLayer(columns) input_layer, sequence_length = sequence_feature_layer(features) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length) ``` Args: key: A unique string identifying the input features. shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values. default_value: A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`. dtype: The type of values. normalizer_fn: If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. Returns: A `SequenceNumericColumn`. Raises: TypeError: if any dimension in shape is not an int. ValueError: if any dimension in shape is not a positive integer. ValueError: if `dtype` is not convertible to `tf.float32`. """ shape = fc_old._check_shape(shape=shape, key=key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) if normalizer_fn is not None and not callable(normalizer_fn): raise TypeError('normalizer_fn must be a callable. Given: {}'.format( normalizer_fn)) return SequenceNumericColumn(key, shape=shape, default_value=default_value, dtype=dtype, normalizer_fn=normalizer_fn)
def sequence_numeric_column( key, shape=(1,), default_value=0., dtype=dtypes.float32): """Returns a feature column that represents sequences of numeric data. Example: ```python temperature = sequence_numeric_column('temperature') columns = [temperature] features = tf.parse_example(..., features=make_parse_example_spec(columns)) input_layer, sequence_length = sequence_input_layer(features, columns) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length) ``` Args: key: A unique string identifying the input features. shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values. default_value: A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`. dtype: The type of values. Returns: A `_SequenceNumericColumn`. Raises: TypeError: if any dimension in shape is not an int. ValueError: if any dimension in shape is not a positive integer. ValueError: if `dtype` is not convertible to `tf.float32`. """ shape = fc._check_shape(shape=shape, key=key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) return _SequenceNumericColumn( key, shape=shape, default_value=default_value, dtype=dtype)
def fixed_len_sequence_numeric_column(key, shape=(1, ), default_value=0., dtype=dtypes.float32, normalizer_fn=None): shape = fc._check_shape(shape=shape, key=key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) if normalizer_fn is not None and not callable(normalizer_fn): raise TypeError('normalizer_fn must be a callable. Given: {}'.format( normalizer_fn)) return _FixedLenSequenceNumericColumn(key, shape=shape, default_value=default_value, dtype=dtype, normalizer_fn=normalizer_fn)