def sequence_numeric_column(
    key,
    shape=(1,),
    default_value=0.,
    dtype=dtypes.float32,
    normalizer_fn=None):
  """Returns a feature column that represents sequences of numeric data.

  Example:

  ```python
  temperature = sequence_numeric_column('temperature')
  columns = [temperature]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  sequence_feature_layer = SequenceFeatureLayer(columns)
  input_layer, sequence_length = sequence_feature_layer(features)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input features.
    shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`,
      each example must contain `2 * sequence_length` values.
    default_value: A single value compatible with `dtype` that is used for
      padding the sparse data into a dense `Tensor`.
    dtype: The type of values.
    normalizer_fn: If not `None`, a function that can be used to normalize the
      value of the tensor after `default_value` is applied for parsing.
      Normalizer function takes the input `Tensor` as its argument, and returns
      the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
      even though the most common use case of this function is normalization, it
      can be used for any kind of Tensorflow transformations.

  Returns:
    A `SequenceNumericColumn`.

  Raises:
    TypeError: if any dimension in shape is not an int.
    ValueError: if any dimension in shape is not a positive integer.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
  shape = fc_old._check_shape(shape=shape, key=key)
  if not (dtype.is_integer or dtype.is_floating):
    raise ValueError('dtype must be convertible to float. '
                     'dtype: {}, key: {}'.format(dtype, key))
  if normalizer_fn is not None and not callable(normalizer_fn):
    raise TypeError(
        'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn))

  return SequenceNumericColumn(
      key,
      shape=shape,
      default_value=default_value,
      dtype=dtype,
      normalizer_fn=normalizer_fn)
Пример #2
0
def sequence_numeric_column(key,
                            shape=(1, ),
                            default_value=0.,
                            dtype=dtypes.float32,
                            normalizer_fn=None):
    """Returns a feature column that represents sequences of numeric data.

  Example:

  ```python
  temperature = sequence_numeric_column('temperature')
  columns = [temperature]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  sequence_feature_layer = SequenceFeatureLayer(columns)
  input_layer, sequence_length = sequence_feature_layer(features)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input features.
    shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`,
      each example must contain `2 * sequence_length` values.
    default_value: A single value compatible with `dtype` that is used for
      padding the sparse data into a dense `Tensor`.
    dtype: The type of values.
    normalizer_fn: If not `None`, a function that can be used to normalize the
      value of the tensor after `default_value` is applied for parsing.
      Normalizer function takes the input `Tensor` as its argument, and returns
      the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
      even though the most common use case of this function is normalization, it
      can be used for any kind of Tensorflow transformations.

  Returns:
    A `SequenceNumericColumn`.

  Raises:
    TypeError: if any dimension in shape is not an int.
    ValueError: if any dimension in shape is not a positive integer.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
    shape = fc_old._check_shape(shape=shape, key=key)
    if not (dtype.is_integer or dtype.is_floating):
        raise ValueError('dtype must be convertible to float. '
                         'dtype: {}, key: {}'.format(dtype, key))
    if normalizer_fn is not None and not callable(normalizer_fn):
        raise TypeError('normalizer_fn must be a callable. Given: {}'.format(
            normalizer_fn))

    return SequenceNumericColumn(key,
                                 shape=shape,
                                 default_value=default_value,
                                 dtype=dtype,
                                 normalizer_fn=normalizer_fn)
Пример #3
0
def sequence_numeric_column(
    key,
    shape=(1,),
    default_value=0.,
    dtype=dtypes.float32):
  """Returns a feature column that represents sequences of numeric data.

  Example:

  ```python
  temperature = sequence_numeric_column('temperature')
  columns = [temperature]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input features.
    shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`,
      each example must contain `2 * sequence_length` values.
    default_value: A single value compatible with `dtype` that is used for
      padding the sparse data into a dense `Tensor`.
    dtype: The type of values.

  Returns:
    A `_SequenceNumericColumn`.

  Raises:
    TypeError: if any dimension in shape is not an int.
    ValueError: if any dimension in shape is not a positive integer.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
  shape = fc._check_shape(shape=shape, key=key)
  if not (dtype.is_integer or dtype.is_floating):
    raise ValueError('dtype must be convertible to float. '
                     'dtype: {}, key: {}'.format(dtype, key))

  return _SequenceNumericColumn(
      key,
      shape=shape,
      default_value=default_value,
      dtype=dtype)
def sequence_numeric_column(
    key,
    shape=(1,),
    default_value=0.,
    dtype=dtypes.float32):
  """Returns a feature column that represents sequences of numeric data.

  Example:

  ```python
  temperature = sequence_numeric_column('temperature')
  columns = [temperature]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input features.
    shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`,
      each example must contain `2 * sequence_length` values.
    default_value: A single value compatible with `dtype` that is used for
      padding the sparse data into a dense `Tensor`.
    dtype: The type of values.

  Returns:
    A `_SequenceNumericColumn`.

  Raises:
    TypeError: if any dimension in shape is not an int.
    ValueError: if any dimension in shape is not a positive integer.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
  shape = fc._check_shape(shape=shape, key=key)
  if not (dtype.is_integer or dtype.is_floating):
    raise ValueError('dtype must be convertible to float. '
                     'dtype: {}, key: {}'.format(dtype, key))

  return _SequenceNumericColumn(
      key,
      shape=shape,
      default_value=default_value,
      dtype=dtype)
def fixed_len_sequence_numeric_column(key,
                                      shape=(1, ),
                                      default_value=0.,
                                      dtype=dtypes.float32,
                                      normalizer_fn=None):
    shape = fc._check_shape(shape=shape, key=key)
    if not (dtype.is_integer or dtype.is_floating):
        raise ValueError('dtype must be convertible to float. '
                         'dtype: {}, key: {}'.format(dtype, key))
    if normalizer_fn is not None and not callable(normalizer_fn):
        raise TypeError('normalizer_fn must be a callable. Given: {}'.format(
            normalizer_fn))

    return _FixedLenSequenceNumericColumn(key,
                                          shape=shape,
                                          default_value=default_value,
                                          dtype=dtype,
                                          normalizer_fn=normalizer_fn)