def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed): alpha_p = -alpha * scale kept_idx = K.greater_equal(K.random_uniform(noise_shape, seed=seed), rate) kept_idx = K.cast(kept_idx, K.floatx()) a = ((1 - rate) * (1 + rate * alpha_p ** 2)) ** -0.5 b = -a * alpha_p * rate x = inputs * kept_idx + alpha_p * (1 - kept_idx) return a * x + b
def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed): # pylint: disable=missing-docstring alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = K.greater_equal( K.random_uniform(noise_shape, seed=seed), rate) kept_idx = K.cast(kept_idx, K.floatx()) # Get affine transformation params a = ((1 - rate) * (1 + rate * alpha_p**2))**-0.5 b = -a * alpha_p * rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) # Do affine transformation return a * x + b
def __call__(self, w): w *= K.cast(K.greater_equal(w, 0.), K.floatx()) return w
def __call__(self, w): return w * K.cast(K.greater_equal(w, 0.), K.floatx())