示例#1
0
 def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed):
   alpha_p = -alpha * scale
   kept_idx = K.greater_equal(K.random_uniform(noise_shape, seed=seed),
                              rate)
   kept_idx = K.cast(kept_idx, K.floatx())
   a = ((1 - rate) * (1 + rate * alpha_p ** 2)) ** -0.5
   b = -a * alpha_p * rate
   x = inputs * kept_idx + alpha_p * (1 - kept_idx)
   return a * x + b
示例#2
0
 def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed):
   alpha_p = -alpha * scale
   kept_idx = K.greater_equal(K.random_uniform(noise_shape, seed=seed),
                              rate)
   kept_idx = K.cast(kept_idx, K.floatx())
   a = ((1 - rate) * (1 + rate * alpha_p ** 2)) ** -0.5
   b = -a * alpha_p * rate
   x = inputs * kept_idx + alpha_p * (1 - kept_idx)
   return a * x + b
示例#3
0
      def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed):  # pylint: disable=missing-docstring
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale

        kept_idx = K.greater_equal(
            K.random_uniform(noise_shape, seed=seed), rate)
        kept_idx = K.cast(kept_idx, K.floatx())

        # Get affine transformation params
        a = ((1 - rate) * (1 + rate * alpha_p**2))**-0.5
        b = -a * alpha_p * rate

        # Apply mask
        x = inputs * kept_idx + alpha_p * (1 - kept_idx)

        # Do affine transformation
        return a * x + b
示例#4
0
      def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed):  # pylint: disable=missing-docstring
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale

        kept_idx = K.greater_equal(
            K.random_uniform(noise_shape, seed=seed), rate)
        kept_idx = K.cast(kept_idx, K.floatx())

        # Get affine transformation params
        a = ((1 - rate) * (1 + rate * alpha_p**2))**-0.5
        b = -a * alpha_p * rate

        # Apply mask
        x = inputs * kept_idx + alpha_p * (1 - kept_idx)

        # Do affine transformation
        return a * x + b
示例#5
0
 def __call__(self, w):
     w *= K.cast(K.greater_equal(w, 0.), K.floatx())
     return w
示例#6
0
 def __call__(self, w):
   return w * K.cast(K.greater_equal(w, 0.), K.floatx())