コード例 #1
0
ファイル: stitchnet2.py プロジェクト: mauricerupp/StitchNet
    def __init__(self, input_size, normalizer, isTraining):

        single_input = Input(shape=[64, 64, 3])
        encoder_inputs = Input(shape=input_size)

        # create the encoderblocks:
        x = single_input
        for i in range(4):
            x = enc_block_leaky(x, int(64 * 2**i), i + 1, normalizer, isTraining)

        # bottleneck of the encoder:
        x = Conv2D(512, 3, activation=None, padding='same', strides=1, name='encoder_conv5_1')(x)
        x = normalize(x, 'encoder_norm5_1', normalizer, isTraining)
        x = LeakyReLU()(x)
        x = Conv2D(512, 3, activation=None, padding='same', strides=1, name='encoder_conv5_2')(x)
        x = normalize(x, 'encoder_norm5_2', normalizer, isTraining)
        enc_out = LeakyReLU(name='bottleneck_relu_layer')(x)

        # create the encoder, which is the same for every snapshot
        encoder_model = Model(inputs=single_input, outputs=enc_out)

        # encode each snapshot individually through the same encoder (so weights are shared across the snapshots)
        encoded_img_list = []
        index = 1
        for i in range(0, input_size[2], 3):
            x = Lambda(lambda x: x[:, :, :, i:i + 3], name='img_{}'.format(str(index)))(encoder_inputs)
            encoded_img_list.append(encoder_model(x))
            index += 1

        # concatenate the encodings
        x = Concatenate(axis=3, name='conc_img_features')(encoded_img_list)

        # global convolutions
        for i in range(2):
            x = Conv2D(int(2048 / 2 ** i), 3, activation=None, padding='same', strides=1,
                       name='{}_decoder_conv{}_{}'.format("conc_conv", index, i + 2))(x)
            x = normalize(x, '{}_decoder_norm{}_{}'.format("conc_conv", index, i + 2), 'instance', True)
            x = LeakyReLU()(x)

        # decoder blocks
        for i in range(5):
            x = big_dec_block_leaky(x, int(1024 / 2 ** i), i + 1, normalizer, isTraining, "D2")
        out = Conv2D(3, 3, activation='tanh', padding='same', name='final_conv')(x)

        self.stitchdecoder = Model(inputs=encoder_inputs, outputs=out, name='stitcher')
        self.stitchdecoder.summary()

        # enable multi-gpu-processing
        encoder_model = multi_gpu_model(encoder_model, gpus=2)
        self.stitchdecoder = multi_gpu_model(self.stitchdecoder, gpus=2)

        self.stitchdecoder.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0001),
                                   loss=vgg_loss, metrics=['accuracy', stitched_PSNR, stitched_ssim,
                                                           perceptual_stitched_loss, mae_loss])
コード例 #2
0
    def compile_model(self):
        # init summary writer for tensorboard
        self.callback1 = TensorBoard(self.log_dir + '/discriminator')
        self.callback2 = TensorBoard(self.log_dir + '/generator')
        self.callback3 = TensorBoard(self.log_dir + '/generated_images')

        # model stuff
        input_shape = [self.image_size, self.image_size, self.image_channels]
        adam1 = Adam(lr=self.lr)
        adam2 = Adam(lr=self.lr * 2)

        # init and add multi-gpu support
        try:
            self.discriminator = multi_gpu_model(self.discriminator(),
                                                 gpus=self.gpu)
        except:
            self.discriminator = self.discriminator()
        try:
            self.generator = multi_gpu_model(self.generator(), gpus=self.gpu)
        except:
            self.generator = self.generator()

        # compile discriminator
        self.discriminator.compile(loss='binary_crossentropy', optimizer=adam1)

        # compile generator
        input_tensor = Input(shape=input_shape)
        generated_catroon_tensor = self.generator(input_tensor)
        self.discriminator.trainable = False  # for here we only train the generator
        discriminator_output = self.discriminator(generated_catroon_tensor)
        self.train_generator = Model(
            input_tensor,
            outputs=[generated_catroon_tensor, discriminator_output])
        # add multi-gpu support
        try:
            self.train_generator = multi_gpu_model(self.train_generator,
                                                   gpus=self.gpu)
        except:
            pass
        self.train_generator.compile(
            loss=[self.vgg_loss, 'binary_crossentropy'],
            loss_weights=[float(self.weight), 1.0],
            optimizer=adam2)

        # set callback model
        self.callback1.set_model(self.discriminator)
        self.callback2.set_model(self.train_generator)
        self.callback3.set_model(self.train_generator)
コード例 #3
0
def _load_model(folder, model, weights_only=True):
    latest = os.path.join(folder, "latest")
    if model is None and weights_only:
        with open(os.path.join(folder, 'model.yaml'), 'r') as yaml_file:
            loaded_model_yaml = yaml_file.read()
        model = model_from_yaml(loaded_model_yaml, custom_objects={'tf': tf})
        print('Model loaded from %s' % os.path.join(folder, 'model.yaml'))
    if os.path.isfile(latest):
        with open(latest, 'r') as f:
            filename = f.readlines()[0]
        epoch = filename.split('_')[1]
        # If model and weights were stored separately
        if weights_only:
            try:
                model.load_weights(os.path.join(folder, '%s.h5' % filename))
            except:
                print('Single gpu loading failed, try with multi-gpu loading...')
                from tensorflow.python.keras.utils import multi_gpu_model
                multi_model = multi_gpu_model(model, gpus=len(os.environ["CUDA_VISIBLE_DEVICES"].split(',')) - 1)
                multi_model.load_weights(os.path.join(folder, '%s.h5' % filename))
                model = multi_model.layers[-2]
            print('Weights loaded from %s' % os.path.join(folder, '%s.h5' % filename))
        elif not weights_only:
            model = load_model(os.path.join(folder, '%s.h5' % filename), compile=False)
            print('Model loaded from %s' % os.path.join(folder, '%s.h5' % filename))
        return model, int(epoch)
    return model, 0
コード例 #4
0
ファイル: yolo.py プロジェクト: schay/HandwrittenAnnotation
    def generate(self, model_path):
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        # self.yolo_model = load_model(model_path, compile=False)
        self.yolo_model = yolo_body(
            Input(shape=(None, None, self.num_channels)), num_anchors // 3,
            num_classes)
        self.yolo_model.load_weights(model_path)

        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes
コード例 #5
0
ファイル: model-ninapro-g12.py プロジェクト: ketyi/2SRNN
def toMultiGpuModel(model):
    try:
        gpu_model = multi_gpu_model(model)
        return gpu_model
    except:
        print("gpu_model error")
        return None
コード例 #6
0
def model_placement(model, num_gpus):
    """
    Function to place model on correct device based on number of GPUs.
    
    Input:
        - model: model to fit. Model class using Keras Functional API.
        - num_gpus: Number of GPUs. 0 for CPU mode. 
    
    Returns:
        - p_model: model placed on appropriate device. 
    
    """

    if num_gpus > 1:
        from tensorflow.python.keras.utils import multi_gpu_model

        with tf.device('/cpu:0'):
            p_model = model
        parallel_model = multi_gpu_model(p_model, gpus=num_gpus)

        return parallel_model

    elif num_gpus == 0:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = ""
        p_model = model
        return p_model

    else:
        with tf.device('/gpu:0'):
            p_model = model
        return p_model
コード例 #7
0
def main(argv):
    with set_session().as_default():
        (X_train,
         y_train), (X_val, y_val) = load_imdb(max_features=FLAGS.max_features,
                                              maxlen=FLAGS.maxlen)
        basemodel = BaseModel(input_dim=FLAGS.max_features,
                              maxlen=FLAGS.maxlen)
        model = multi_gpu_model(basemodel.build(name=FLAGS.model_name),
                                gpus=len(get_available_gpus()))
        model.compile(loss='binary_crossentropy',
                      optimizer=FLAGS.optimizer,
                      metrics=['accuracy'])
        model.fit(
            X_train.todense(),
            y_train,
            validation_data=(X_val.todense(), y_val),
            batch_size=FLAGS.batch_size,
            epochs=FLAGS.epochs,
            callbacks=[
                ModelCheckpointToGcs(
                    remotekey=FLAGS.gcs_path,
                    filename=
                    'model_checkpoint.{epoch:02d}_{loss:.6f}_{val_loss:.6f}.h5',
                    save_best_only=True),
                CSVLoggerToGcs(remotekey=FLAGS.gcs_path,
                               filename=path.join('history_{}_{}.tsv').format(
                                   FLAGS.model_name, FLAGS.optimizer),
                               separator='\t'),
            ])
コード例 #8
0
ファイル: train.py プロジェクト: oupirum/sp2cp
def main():
    os.makedirs(OPTS.models_dir, exist_ok=True)

    with open(os.path.join(OPTS.input_dir, 'sequences.json'), 'r') as f:
        sequences = json.loads(f.read())

    with open(os.path.join(OPTS.input_dir, 'id2token.json'), 'rb') as f:
        id2token = json.loads(f.read().decode('utf-8'))

        with open(os.path.join(OPTS.models_dir, 'id2token.json'), 'wb') as fw:
            f.seek(0)
            fw.write(f.read())

    print('lexicon:', len(id2token))
    print('sequences:', len(sequences))
    seq_min_len = min([len(seq) for seq in sequences])
    print('seq_min_len:', seq_min_len)
    seq_max_len = max([len(seq) for seq in sequences])
    print('seq_max_len:', seq_max_len)

    data_len = len(sequences) - len(sequences) % OPTS.batch_size
    data = sequences[0:data_len]
    data = pad_sequences(data, maxlen=seq_max_len, dtype='int32')

    model = create_model(seq_len=data.shape[-1],
                         n_input_nodes=len(id2token),
                         n_embedding_nodes=OPTS.embedding_size,
                         n_hidden_nodes=OPTS.hidden_size,
                         batch_size=OPTS.batch_size,
                         stateful=False)

    ckpt_file = os.path.join(OPTS.models_dir, 'ckpt.h5')
    if os.path.exists(ckpt_file):
        model = load_model(ckpt_file)

    x = data
    y = np.roll(x, -1, 1)
    y = y[:, :, None]

    print('available devices:')
    print(device_lib.list_local_devices())
    if OPTS.gpus > 1:
        model = multi_gpu_model(model, OPTS.gpus)

    save_step_callback = SaveStepCallback(
        model, save_every_batch=OPTS.save_every_batch)
    ckpt_callback = ModelCheckpoint(ckpt_file,
                                    monitor='loss',
                                    verbose=1,
                                    save_best_only=True,
                                    mode='min')
    model.fit(x=x,
              y=y,
              epochs=OPTS.epochs,
              initial_epoch=OPTS.initial_epoch,
              batch_size=OPTS.batch_size,
              callbacks=[save_step_callback, ckpt_callback],
              shuffle=True)

    model.save_weights(os.path.join(OPTS.models_dir, 'weights.h5'))
コード例 #9
0
ファイル: _base.py プロジェクト: hermioneDeep/dftp
 def add_predictor(self, side, model):
     """ Add a predictor to the predictors dictionary """
     logger.debug("Adding predictor: (side: '%s', model: %s)", side, model)
     if self.gpus > 1:
         logger.debug("Converting to multi-gpu: side %s", side)
         model = multi_gpu_model(model, self.gpus)
     self.predictors[side] = model
     if not self.state.inputs:
         self.store_input_shapes(model)
コード例 #10
0
    def __init__(self, input_size, norm='batch', isTraining=None):
        """
        A convolutional autoencoder which is used with random crops of 64x64x3.
        The bottleneck is 4x4x512 and leakyRelu is used all over the autoencoder.
        """
        inputs = Input(shape=input_size, name='encoder_input')
        x = inputs

        # encoder part:
        for i in range(4):
            x = enc_block_leaky(x, int(64 * 2**i), i + 1, norm, isTraining)

        # bottleneck:
        x = Conv2D(512,
                   3,
                   activation=None,
                   padding='same',
                   strides=1,
                   name='encoder_conv5_1')(x)
        x = normalize(x, 'encoder_norm5_1', norm, isTraining)
        x = LeakyReLU()(x)
        x = Conv2D(512,
                   3,
                   activation=None,
                   padding='same',
                   strides=1,
                   name='encoder_conv5_2')(x)
        x = normalize(x, 'encoder_norm5_2', norm, isTraining)
        enc_out = LeakyReLU(name='bottleneck_relu_layer')(x)

        # decoder
        x = enc_out
        for i in range(4):
            x = dec_block_leaky(x, int(256 / 2**i), i + 1, norm, isTraining,
                                "autoenc_v6")

        # final layer
        out = Conv2D(3,
                     3,
                     activation='tanh',
                     padding='same',
                     strides=1,
                     name='final_conv')(x)

        self.autoencoder = Model(inputs=inputs,
                                 outputs=out,
                                 name='autoencoder')

        self.autoencoder.summary()
        self.autoencoder = multi_gpu_model(self.autoencoder, gpus=2)

        self.autoencoder.compile(
            optimizer=tf.keras.optimizers.Adam(lr=0.0001),
            loss=vgg_loss,
            metrics=['accuracy', PSNR, mae_loss, perceptual_loss])
コード例 #11
0
def main(unused_argv):
    if platform.system() == 'Windows':
        print('Running on Windows')
        base_dir = os.path.join('E:\\', 'Program', 'Bite')
        save_path = os.path.join(base_dir, 'ckpt',
                                 'weights-improvement-{epoch:02d}-{loss:.4f}-{acc:.2f}.hdf5')


    elif platform.system() == 'Linux':
        print('Running on Linux')
        base_dir = os.path.join('/media', 'md0', 'xt1800i', 'Bite')
        save_path = os.path.join(base_dir, 'ckpt',
                                 'weights-improvement-{epoch:02d}-{loss:.4f}-{acc:.2f}.hdf5')

    else:
        print('Running on unsupported system')
        return


    tfrecord = os.path.join(base_dir, 'datasets', 'tfrecord', 'snake_all.tfrecord')
    with tf.device('/cpu:0'):
        model = keras_model()
        training_set = tfdata_generator(filename=tfrecord, batch_size=FLAGS.batch_size, aug=True)
        validation_set = tfdata_generator(filename=tfrecord, batch_size=FLAGS.batch_size)
    if FLAGS.ckpt is not None:
        print('loading weights')
        model.load_weights(FLAGS.ckpt)
    try:
        parallel_model = multi_gpu_model(model, gpus=2)
        print('Training on multiple GPUs')
    except:
        parallel_model = model
        print('Training on single GPU')
    global_step = tf.Variable(0, trainable=False)
    learning_rate = tf.train.exponential_decay(learning_rate=0.001, global_step=global_step,
                                               staircase=True, decay_steps=int(18288 / FLAGS.batch_size), decay_rate=0.96)
    # learning_rate = tf.keras.optimizers.
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

    print(model.summary())
    parallel_model.compile(optimizer=optimizer, loss='categorical_crossentropy'
                           , metrics=['accuracy'])

    ckpt = ModelCheckpoint(filepath=save_path, monitor='val_loss', save_best_only=False,
                           save_weights_only=True, mode='auto', period=10)
    callbacks_list = [ckpt]

    parallel_model.fit(x=training_set.make_one_shot_iterator(),
                       steps_per_epoch=int(18288 / FLAGS.batch_size),
                       batch_size=FLAGS.batch_size,
                       epochs=500000,
                       validation_data=validation_set.make_one_shot_iterator(),
                       validation_steps=int(18288 / FLAGS.batch_size),
                       callbacks=callbacks_list)
コード例 #12
0
    def discriminator_model(self):
        if self.DM:
            return self.DM
        optimizer = RMSprop(lr=2e-4, decay=1e-8)
        self.DM = Sequential()
        self.DM.add(self.discriminator())

        #multi_gpu
        with tf.device('/cpu:0'):
            self.DM = multi_gpu_model(self.DM, gpus=4)

        self.DM.compile(loss='binary_crossentropy', optimizer=optimizer,\
            metrics=['accuracy'])
        return self.DM
コード例 #13
0
 def opt_init(self):
     opt = Adam(lr=self.lr,
                beta_1=0.9,
                beta_2=0.999,
                decay=0.01,
                epsilon=10e-8)
     if self.gpu_nums > 1:
         self.ctc_model = multi_gpu_model(self.ctc_model,
                                          gpus=self.gpu_nums)
     self.ctc_model.compile(loss={
         'ctc': lambda y_true, output: output
     },
                            optimizer=opt,
                            metrics=['accuracy'])
     self.ctc_model.summary()
コード例 #14
0
ファイル: yolo.py プロジェクト: markgordon/keras-yolo3
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors == 6  # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(
                self.model_path)  # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes
コード例 #15
0
    def load(self, save_path):
        """
        Load model weights, handles multi_gpu
        """

        # multi gpu
        if self.n_gpu > 1:
            # cpu_merge used for nv_link : https://keras.io/utils/#multi_gpu_model
            # otherwise use : model = multi_gpu_model(model, cpu_relocation=True)
            # to train models with weights merge on CPU using cpu_relocation
            self.model = multi_gpu_model(self.model,
                                         gpus=self.n_gpu,
                                         cpu_merge=False)
            self.model.layers[-2].load_weights(save_path)
        else:
            self.model.load_weights(save_path)
        self.model.compile(optimizer=self.optimizer,
                           loss='categorical_crossentropy',
                           metrics=self.metrics)
        print(self.model.summary())
コード例 #16
0
def fitness(learning_rate, num_dense_layers,
            num_epochs, num_conv_layers, kernel_size, num_filters):
    """
    Hyper-parameters:
    learning_rate:     Learning-rate for the optimizer.
    num_dense_layers:  Number of dense layers.
    num_conv_layers:   Number of nodes in each conv layer.
    kernel_size:        kernel_size function for all layers.
    num_filters:       Number of Filters
    """

    # Print the hyper-parameters.
    print('learning rate: {0:.1e}'.format(learning_rate))
    print('num_dense_layers:', num_dense_layers)
    print('num_conv_layers:', num_conv_layers)
    print('kernel_size:', kernel_size)
    print('num_filters:', num_filters)
    print()
    
    # Create the neural network with these hyper-parameters.
    model = create_model(learning_rate=learning_rate,
                         num_dense_layers=num_dense_layers,
			 num_epochs=num_epochs,
                         num_conv_layers=num_conv_layers,
                         kernel_size=kernel_size,
                         num_filters=num_filters)

    # Dir-name for the TensorBoard log-files.
    log_dir = log_dir_name(learning_rate, num_dense_layers,
                           num_conv_layers, kernel_size, num_filters)
    
    # Create a callback-function for Keras which will be
    # run after each epoch has ended during training.
    # This saves the log-files for TensorBoard.
    # Note that there are complications when histogram_freq=1.
    # It might give strange errors and it also does not properly
    # support Keras data-generators for the validation-set.
    callback_log = TensorBoard(
        log_dir=log_dir,
        batch_size=16,
        write_graph=True,
        write_grads=False,
        write_images=False)
   
    # Use Keras to train the model.
    #checker = torque[crossValidation:index]
    data_inputs = {}
    data_inputs['images'] = imageArray[0:crossValidation]
    data_inputs['roll'] = roll[0:crossValidation]
    data_inputs['pitch'] = pitch[0:crossValidation]

    parallel_model = multi_gpu_model(model, gpus=4)
    optimizer = Adam(lr=learning_rate, clipnorm=1.0, clipvalue=0.5)
    parallel_model.compile(optimizer=optimizer,
                  loss='mean_squared_error',
                  metrics=['mse'])
 
    history = parallel_model.fit(x=data_inputs,
                        y=torque[0:crossValidation],
                        epochs=num_epochs,
                        batch_size=15,
			            shuffle=False,
                        validation_data=validation_data,
                        callbacks=[callback_log])

    # Get the classification accuracy on the validation-set
    # after the last training-epoch.

    accuracy = history.history['val_loss'][-1]

    # Print the classification accuracy.
    print()
    print("Error: {}".format(accuracy))
    print()

    # Save the model if it improves on the best-found performance.
    # We use the global keyword so we update the variable outside
    # of this function.
    global best_accuracy

    # If the classification accuracy of the saved model is improved ...
    if accuracy < best_accuracy:
        # Save the new model to harddisk.
        model.save(path_best_model)
        
        # Update the classification accuracy.
        best_accuracy = accuracy

    # Delete the Keras model with these hyper-parameters from memory.
    del model
    
    # Clear the Keras session, otherwise it will keep adding new
    # models to the same TensorFlow graph each time we create
    # a model with a different set of hyper-parameters.
    K.clear_session()
    
    # NOTE: Scikit-optimize does minimization so it tries to
    # find a set of hyper-parameters with the LOWEST fitness-value.
    # Because we are interested in the HIGHEST classification
    # accuracy, we need to negate this number so it can be minimized.
    return accuracy
コード例 #17
0
def main():
    try:
        opts, args = getopt.getopt(sys.argv[1:], "ihlmcwhbendw", [
            "help", "input=", "learningrate=", "model=", "channel=", "width=",
            "height=", "batch=", "epoch=", "normalize=", "depth=", "weights="
        ])
    except getopt.GetoptError as err:
        print(str(err))
        help()
        sys.exit(1)

    #Default Parmas
    CHANNEL = 3
    WIDTH = 32
    HEIGHT = 32
    BATCH_SIZE = 32
    LEARNING_RATE = 0.001
    MODEL = "mlp"
    EPOCH = 1000
    Gdalimg_path = '../data/training/'
    NORM_PATH = '../data/training/norm.txt'
    RESNET_DEPTH = 20
    SAVE_PATH = 'saved_models/' + MODEL + "_" + str(LEARNING_RATE) + ".h5"

    for opt, arg in opts:
        if opt == "h" or opt == "--help":
            help()
            sys.exit(1)
        elif opt == "l" or opt == "--learningrate":
            LEARNING_RATE = float(arg)
        elif opt == "m" or opt == "--model":
            MODEL = arg
        elif opt == "c" or opt == "--channel":
            CHANNEL = int(arg)
        elif opt == "w" or opt == "--width":
            WIDTH = int(arg)
        elif opt == "h" or opt == "--height":
            HEIGHT = int(arg)
        elif opt == "b" or opt == "--batch":
            BATCH = int(arg)
        elif opt == "e" or opt == "--epoch":
            EPOCH = int(arg)
        elif opt == "i" or opt == "--input":
            Gdalimg_path = arg
        elif opt == "n" or opt == "--normalize":
            NORM_PATH = arg
        elif opt == "d" or opt == "--depth":
            RESNET_DEPTH = int(arg)
        elif opt == "w" or opt == "--weights":
            SAVE_PATH = arg + ".h5"

    (total_imgs, total_labels,
     num_categ) = GdalDataLoader(Gdalimg_path).getAllImages(
         CHANNEL, WIDTH, HEIGHT, True, False, True, NORM_PATH)
    print("NUMCATEG: " + str(num_categ))

    total_labels = to_categorical(total_labels)

    if MODEL == "mlp":
        model = mlp_model(total_imgs.shape[1:], num_categ)
    elif MODEL == "simple_cnn":
        model = simple_cnn_model(total_imgs.shape[1:], num_categ)
    elif MODEL == "resnet":
        model = resnet_model(total_imgs.shape[1:], RESNET_DEPTH, num_categ)
    else:
        model = mlp_model(total_imgs.shape[1:], num_categ)

    model = multi_gpu_model(model, gpus=4)
    sgd = SGD(lr=LEARNING_RATE)
    model.compile(optimizer=sgd,
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    model.fit(total_imgs,
              total_labels,
              epochs=EPOCH,
              batch_size=BATCH_SIZE,
              validation_split=0.1,
              shuffle=True,
              verbose=2)

    model.save(SAVE_PATH)
コード例 #18
0
def transformer2(ih, iw, nb_conv, size_conv, nb_gpu=1):
    """
    The simple cnn model for image transformation with 2 times of downsampling. It is a choice for fast running.
    However, it will lose resolution during the transformation.

    Parameters
    ----------
    ih, iw : int
        The input image dimension

    nb_conv : int
        Number of convolution kernels for each layer

    size_conv : int
        The size of convolution kernel
    Returns
    -------
    mdl
        Description.
    """
    inputs = Input((ih, iw, 1))

    conv1 = Conv2D(nb_conv, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(inputs)
    conv1 = Conv2D(nb_conv, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv1)

    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(nb_conv * 2, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(pool1)
    conv2 = Conv2D(nb_conv * 2, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv2)

    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(nb_conv * 4, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(pool2)
    #
    fc1 = Flatten()(conv3)
    fc1 = Dense(iw * ih / 16)(fc1)
    fc1 = Reshape((ih // 4, iw // 4, 1))(fc1)

    conv4 = Conv2DTranspose(nb_conv * 4, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(fc1)

    up1 = concatenate([UpSampling2D(size=(2, 2))(conv4), conv2], axis=3)

    conv6 = Conv2DTranspose(nb_conv * 2, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(up1)
    conv6 = Conv2DTranspose(nb_conv * 2, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(conv6)

    up2 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv1], axis=3)

    conv7 = Conv2DTranspose(nb_conv, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(up2)
    conv7 = Conv2DTranspose(nb_conv, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(conv7)

    conv8 = Conv2DTranspose(1, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(conv7)

    mdl = Model(inputs=inputs, outputs=conv8)
    if nb_gpu > 1:
        mdl = multi_gpu_model(mdl, nb_gpu)

    mdl.compile(loss='mse', optimizer='Adam')

    return mdl
コード例 #19
0
                        validation_data=validation_generator,
                        epochs=epochs,
                        use_multiprocessing=False,
                        callbacks=callbacks,
                        workers=4)
    # check weights
    weights = keras.backend.batch_get_value(model.weights)
    if all([np.all(w == ow) for w, ow in zip(weights, original_weights)]):
        print('Weights in the template model have not changed')
    else:
        print('Weights in the template model have changed')
else:
    # 2 gpus
    original_weights = keras.backend.batch_get_value(model.weights)
    parallel_model = multi_gpu_model(model,
                                     gpus=gpus,
                                     cpu_relocation=False,
                                     cpu_merge=True)
    parallel_model.compile(optimizer=Adam(lr=1e-3),
                           loss='mean_squared_error',
                           metrics=[r_squared])
    history = parallel_model.fit_generator(
        generator=training_generator,
        validation_data=validation_generator,
        epochs=epochs,
        use_multiprocessing=False,
        callbacks=[tensorboard],
        workers=4)
    # check weights
    # https://github.com/keras-team/keras/issues/11313
    weights = keras.backend.batch_get_value(model.weights)
    parallel_weights = keras.backend.batch_get_value(parallel_model.weights)
コード例 #20
0
        vehicle = np.zeros_like(y)
        construction[y==2] = 255.
        human[y==6] = 255.
        vehicle[y==7] = 255.
        
        result = img.copy()
        alpha = 0.4
        img[:,:,1] = construction
        img[:,:,2] = vehicle 
        img[:,:,0] = human

        cv2.addWeighted(img, alpha, result, 1-alpha, 0, result)
        cv2.imwrite(f'outputs/{epoch}.png', cv2.cvtColor(result, cv2.COLOR_RGB2BGR))
        print('Wrote file to disk')

unet = DilatedNet(256, 256, 8,use_ctx_module=True, bn=True)
p_unet = multi_gpu_model(unet, 4)
p_unet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[dice_coeff, 'accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/pdilated.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
vis = visualize()
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)


p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=8, callbacks=callbacks, workers=8)
print('Saving final weights')
unet.save_weights('dilated.h5')

コード例 #21
0
    def run(self):
        tf.compat.v1.disable_eager_execution()
        # 입력 값을 받게 추가합니다.
        parser = argparse.ArgumentParser()
        parser.add_argument('--learning_rate',
                            required=False,
                            type=float,
                            default=0.001)
        parser.add_argument('--dropout_rate',
                            required=False,
                            type=float,
                            default=0.2)
        parser.add_argument('--batch_size',
                            required=False,
                            type=int,
                            default=16)
        parser.add_argument('--epoch', required=False, type=int, default=10)
        # relu, sigmoid, softmax, tanh
        parser.add_argument('--act', required=False, type=str, default='relu')

        args = parser.parse_args()

        input = Input(shape=(200, 200, 3))
        model = InceptionV3(input_tensor=input,
                            include_top=False,
                            weights='imagenet',
                            pooling='max')

        for layer in model.layers:
            layer.trainable = False

        input_image_size = (200, 200)

        x = model.output
        x = Dense(1024, name='fully')(x)
        x = Dropout(args.dropout_rate)(x)
        x = BatchNormalization()(x)
        x = Activation(args.act)(x)
        x = Dense(512)(x)
        x = Dropout(args.dropout_rate)(x)
        x = BatchNormalization()(x)
        x = Activation(args.act)(x)
        x = Dense(101, activation='softmax', name='softmax')(x)
        model = Model(model.input, x)

        model.summary()

        train_datagen = ImageDataGenerator(rescale=1. / 255,
                                           validation_split=0.2)
        batch_size = args.batch_size

        train_generator = train_datagen.flow_from_directory(
            '/result/caltech101',
            target_size=input_image_size,
            batch_size=batch_size,
            class_mode='categorical',
            subset='training')

        validation_generator = train_datagen.flow_from_directory(
            '/result/caltech101',
            target_size=input_image_size,
            batch_size=batch_size,
            class_mode='categorical',
            subset='validation')
        model = multi_gpu_model(model, gpus=2)
        model.compile(
            optimizer=tf.keras.optimizers.Adam(lr=args.learning_rate),
            loss='categorical_crossentropy',
            metrics=['acc'])

        early_stopping = EarlyStopping(patience=20,
                                       mode='auto',
                                       monitor='val_acc')
        hist = model.fit_generator(
            train_generator,
            verbose=0,
            steps_per_epoch=train_generator.samples // batch_size,
            validation_data=validation_generator,
            epochs=args.epoch,
            callbacks=[early_stopping, KatibMetricLog()])
コード例 #22
0
    x = Conv2D(filters=512,
               kernel_size=(3, 3),
               strides=(1, 1),
               padding='same',
               name='block5_conv4')(x)
    x = BatchNormalization()(x)
    x = ReLU()(x)
    x = MaxPool2D(pool_size=(2, 2), strides=(2, 2))(x)

    x = GlobalAveragePooling2D()(x)
    x = Dense(units=53, activation='softmax', name='output_predictions')(x)
    model = Model(inputs=input_image, outputs=x, name='Classifier')

# In[3]:

parallel_model = multi_gpu_model(model=model, gpus=4)
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(filepath='models/top_weights.h5',
                     monitor='val_acc',
                     save_best_only='True',
                     save_weights_only='True',
                     verbose=1)
es = EarlyStopping(monitor='val_loss', patience=15, verbose=1)
rlr = ReduceLROnPlateau()
callbacks = [tb, mc, es, rlr]
nadam = Nadam(lr=1e-3)
parallel_model.compile(optimizer=nadam,
                       loss='categorical_crossentropy',
                       metrics=['accuracy'])

# In[ ]:
コード例 #23
0
ファイル: stitchnet1.py プロジェクト: mauricerupp/StitchNet
    def __init__(self, input_size, weights_path, normalizer, isTraining):

        encoder_inputs = Input(shape=input_size)

        # create the autoencoder, load the pre-trained weights
        autoenc = ConvAutoencoder([input_size[0], input_size[1], 3],
                                  norm="instance",
                                  isTraining=False)
        autoenc.autoencoder.load_weights(weights_path)

        # freeze the weights
        autoenc.isNotTraining()

        # create the encoder
        encoder_model = Model(
            inputs=autoenc.autoencoder.input,
            outputs=autoenc.autoencoder.get_layer('autoencoder').get_layer(
                name='bottleneck_relu_layer').output)
        encoder_model.trainable = False

        # encode each image individually through the pre-trained encoder
        encoded_img_list = []
        index = 1
        for i in range(0, input_size[2], 3):
            x = Lambda(lambda x: x[:, :, :, i:i + 3],
                       name='img_{}'.format(str(index)))(encoder_inputs)
            encoded_img_list.append(encoder_model(x))
            index += 1

        # concatenate the encodings
        x = Concatenate(axis=3, name='conc_img_features')(encoded_img_list)

        # global convolutions
        for i in range(2):
            x = Conv2D(int(2048 / 2**i),
                       3,
                       activation=None,
                       padding='same',
                       strides=1,
                       name='{}_decoder_conv{}_{}'.format(
                           "conc_conv", index, i + 2))(x)
            x = normalize(
                x, '{}_decoder_norm{}_{}'.format("conc_conv", index, i + 2),
                'instance', True)
            x = LeakyReLU()(x)

        # decoder blocks
        for i in range(5):
            x = big_dec_block_leaky(x, int(1024 / 2**i), i + 1, normalizer,
                                    isTraining, "D2")
        out = Conv2D(3,
                     3,
                     activation='tanh',
                     padding='same',
                     name='final_conv')(x)

        self.stitchdecoder = Model(inputs=encoder_inputs,
                                   outputs=out,
                                   name='stitcher')
        self.stitchdecoder.summary()

        # enable multi-gpu-processing
        self.stitchdecoder = multi_gpu_model(self.stitchdecoder, gpus=2)

        self.stitchdecoder.compile(
            optimizer=tf.keras.optimizers.Adam(lr=0.0001),
            loss=vgg_loss,
            metrics=[
                'accuracy', stitched_PSNR, stitched_ssim,
                perceptual_stitched_loss, mae_loss
            ])
コード例 #24
0
ファイル: textgenrnn.py プロジェクト: kurecka/textgenrnn
    def train_on_texts(self,
                       texts,
                       context_labels=None,
                       batch_size=128,
                       num_epochs=50,
                       verbose=1,
                       new_model=False,
                       gen_epochs=1,
                       train_size=1.0,
                       max_gen_length=300,
                       validation=True,
                       dropout=0.0,
                       via_new_model=False,
                       save_epochs=0,
                       multi_gpu=False,
                       **kwargs):

        if new_model and not via_new_model:
            self.train_new_model(texts,
                                 context_labels=context_labels,
                                 num_epochs=num_epochs,
                                 gen_epochs=gen_epochs,
                                 train_size=train_size,
                                 batch_size=batch_size,
                                 dropout=dropout,
                                 validation=validation,
                                 save_epochs=save_epochs,
                                 multi_gpu=multi_gpu,
                                 **kwargs)
            return

        if context_labels:
            context_labels = LabelBinarizer().fit_transform(context_labels)

        if 'prop_keep' in kwargs:
            train_size = prop_keep

        if self.config['word_level']:
            texts = [text_to_word_sequence(text, filters='') for text in texts]

        # calculate all combinations of text indices + token indices
        indices_list = [
            np.meshgrid(np.array(i), np.arange(len(text) + 1))
            for i, text in enumerate(texts)
        ]
        indices_list = np.block(indices_list)

        # If a single text, there will be 2 extra indices, so remove them
        # Also remove first sequences which use padding
        if self.config['single_text']:
            indices_list = indices_list[self.config['max_length']:-2, :]

        indices_mask = np.random.rand(indices_list.shape[0]) < train_size

        if multi_gpu:
            num_gpus = len(K.tensorflow_backend._get_available_gpus())
            batch_size = batch_size * num_gpus

        gen_val = None
        val_steps = None
        if train_size < 1.0 and validation:
            indices_list_val = indices_list[~indices_mask, :]
            gen_val = generate_sequences_from_texts(texts, indices_list_val,
                                                    self, context_labels,
                                                    batch_size)
            val_steps = max(
                int(np.floor(indices_list_val.shape[0] / batch_size)), 1)

        indices_list = indices_list[indices_mask, :]

        num_tokens = indices_list.shape[0]
        assert num_tokens >= batch_size, "Fewer tokens than batch_size."

        level = 'word' if self.config['word_level'] else 'character'
        print("Training on {:,} {} sequences.".format(num_tokens, level))

        steps_per_epoch = max(int(np.floor(num_tokens / batch_size)), 1)

        gen = generate_sequences_from_texts(texts, indices_list, self,
                                            context_labels, batch_size)

        base_lr = 4e-3

        # scheduler function must be defined inline.
        def lr_linear_decay(epoch):
            return (base_lr * (1 - (epoch / num_epochs)))

        if context_labels is not None:
            if new_model:
                weights_path = None
            else:
                weights_path = "{}_weights.hdf5".format(self.config['name'])
                self.save(weights_path)

            self.model = textgenrnn_model(self.num_classes,
                                          dropout=dropout,
                                          cfg=self.config,
                                          context_size=context_labels.shape[1],
                                          weights_path=weights_path)

        model_t = self.model

        if multi_gpu:
            # Do not locate model/merge on CPU since sample sizes are small.
            parallel_model = multi_gpu_model(self.model,
                                             gpus=num_gpus,
                                             cpu_merge=False)
            parallel_model.compile(loss='categorical_crossentropy',
                                   optimizer=RMSprop(lr=4e-3, rho=0.99))

            model_t = parallel_model
            print("Training on {} GPUs.".format(num_gpus))

        model_t.fit_generator(gen,
                              steps_per_epoch=steps_per_epoch,
                              epochs=num_epochs,
                              callbacks=[
                                  LearningRateScheduler(lr_linear_decay),
                                  generate_after_epoch(self, gen_epochs,
                                                       max_gen_length),
                                  save_model_weights(self, num_epochs,
                                                     save_epochs)
                              ],
                              verbose=verbose,
                              max_queue_size=10,
                              validation_data=gen_val,
                              validation_steps=val_steps)

        # Keep the text-only version of the model if using context labels
        if context_labels is not None:
            self.model = Model(inputs=self.model.input[0],
                               outputs=self.model.output[1])
コード例 #25
0
ファイル: unet.py プロジェクト: mauricerupp/StitchNet
def create_model(pretrained_weights=None, input_size=None):
    """
    A fairly standard U-Net with skip connections and an increased receptive field
    """
    inputs = Input(input_size)
    conv1 = Conv2D(64, 15, activation='relu', padding='same')(inputs)
    conv1 = Conv2D(64, 15, activation='relu', padding='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(128, 13, activation='relu', padding='same')(pool1)
    conv2 = Conv2D(128, 13, activation='relu', padding='same',
                   dilation_rate=2)(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(256, 13, activation='relu', padding='same')(pool2)
    conv3 = Conv2D(256, 13, activation='relu', padding='same',
                   dilation_rate=2)(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(512, 9, activation='relu', padding='same')(pool3)
    conv4 = Conv2D(512, 9, activation='relu', padding='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Conv2D(1024, 6, activation='relu', padding='same')(pool4)
    conv5 = Conv2D(1024, 3, activation='relu', padding='same')(conv5)

    up6 = Conv2DTranspose(512,
                          2,
                          activation='relu',
                          padding='same',
                          strides=(2, 2))(conv5)
    merge6 = concatenate([conv4, up6], axis=3)
    conv6 = Conv2D(512, 3, activation='relu', padding='same')(merge6)
    conv6 = Conv2D(512, 3, activation='relu', padding='same')(conv6)

    up7 = Conv2DTranspose(256,
                          2,
                          activation='relu',
                          padding='same',
                          strides=(2, 2))(conv6)
    merge7 = concatenate([conv3, up7], axis=3)
    conv7 = Conv2D(256, 3, activation='relu', padding='same')(merge7)
    conv7 = Conv2D(256, 3, activation='relu', padding='same')(conv7)

    up8 = Conv2DTranspose(128,
                          2,
                          activation='relu',
                          padding='same',
                          strides=(2, 2))(conv7)
    merge8 = concatenate([conv2, up8], axis=3)
    conv8 = Conv2D(128, 3, activation='relu', padding='same')(merge8)
    conv8 = Conv2D(128, 3, activation='relu', padding='same')(conv8)

    up9 = Conv2DTranspose(64,
                          2,
                          activation='relu',
                          padding='same',
                          strides=(2, 2))(conv8)
    merge9 = concatenate([conv1, up9], axis=3)
    conv9 = Conv2D(64, 3, activation='relu', padding='same')(merge9)
    conv9 = Conv2D(64, 3, activation='relu', padding='same')(conv9)

    up10 = Conv2DTranspose(32,
                           2,
                           activation='relu',
                           padding='same',
                           strides=(2, 2))(conv9)
    conv10 = Conv2D(32, 3, activation='relu', padding='same')(up10)
    out = Conv2D(3, 3, activation='tanh', padding='same', strides=1)(conv10)
    model = Model(inputs=inputs, outputs=out)
    model = multi_gpu_model(model, gpus=2)
    model.compile(optimizer='adam',
                  loss=l1_loss.custom_loss,
                  metrics=['accuracy', stitched_PSNR, stitched_ssim])

    model.summary()

    if pretrained_weights:
        model.load_weights(pretrained_weights)

    return model
コード例 #26
0
    drop = 0.5
    epochs_drop = 3.0
    lrate = initial_lrate * \
        math.pow(drop, math.floor((1 + epoch) / epochs_drop))
    print(f'Setting lr =>{lrate}')
    return lrate


model = DeepLabV3Plus(img_height, img_width, classes)
try:
    print('Loading previous weights')
    model.load_weights('top_weights.h5')
except:
    print('Training from scratch !!!')
print('*** Building multi_gpu_model ***')
pmodel = multi_gpu_model(model, 4)
pmodel.compile(optimizer=Adam(lr=1e-4),
               loss='sparse_categorical_crossentropy',
               metrics=['accuracy'])
print('*** Building multi_gpu_model completed ***')

tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max',
                     filepath='top_weights.h5',
                     monitor='val_acc',
                     save_best_only='True',
                     save_weights_only='True',
                     verbose=1)
lrsched = LearningRateScheduler(lr_sched)
viz = TensorBoardImage('validation_images')
callbacks = [mc, viz, tb]
コード例 #27
0
    dnn_feature_columns = fixlen_feature_columns
    linear_feature_columns = fixlen_feature_columns

    feature_names = get_feature_names(linear_feature_columns +
                                      dnn_feature_columns)

    # 3.generate input data for model

    train, test = train_test_split(data, test_size=0.2)

    train_model_input = {name: train[name] for name in feature_names}
    test_model_input = {name: test[name] for name in feature_names}

    # 4.Define Model,train,predict and evaluate
    model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary')
    model = multi_gpu_model(model, gpus=2)

    model.compile(
        "adam",
        "binary_crossentropy",
        metrics=['binary_crossentropy'],
    )

    history = model.fit(
        train_model_input,
        train[target].values,
        batch_size=256,
        epochs=10,
        verbose=2,
        validation_split=0.2,
    )
コード例 #28
0
def transformer3_pooling(ih, iw, nb_conv, size_conv, nb_gpu):
    """
    The cnn image transformation model with 3 times of downsampling. The downsampling uses maxpooling.

    Parameters
    ----------
    ih, iw : int
        The input image dimension

    nb_conv : int
        Number of convolution kernels for each layer

    size_conv : int
        The size of convolution kernel
    Returns
    -------
    mdl
        Description.

    """

    inputs = Input((ih, iw, 1))

    conv1 = Conv2D(nb_conv, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(inputs)
    conv1 = Conv2D(nb_conv, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv1)

    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(nb_conv * 2, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(pool1)
    conv2 = Conv2D(nb_conv * 2, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv2)

    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(nb_conv * 2, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(pool2)
    conv3 = Conv2D(nb_conv * 2, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv3)

    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(nb_conv * 4, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(pool3)
    conv4 = Conv2D(nb_conv * 4, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv4)
    conv4 = Conv2D(1, (size_conv, size_conv),
                   activation='relu',
                   padding='same')(conv4)
    #
    fc1 = Flatten()(conv4)
    fc1 = Dense(iw * ih / 128, activation='relu')(fc1)
    fc1 = Dropout(0.2)(fc1)
    fc1 = Dense(iw * ih / 128, activation='relu')(fc1)
    fc1 = Dropout(0.25)(fc1)
    fc1 = Dense(iw * ih / 64, activation='relu')(fc1)
    fc1 = Dropout(0.25)(fc1)
    fc1 = Reshape((int(ih // 8), int(iw // 8), 1))(fc1)

    fc2 = Conv2DTranspose(nb_conv * 4, (size_conv, size_conv),
                          activation='relu',
                          padding='same')(fc1)
    fc2 = Conv2DTranspose(nb_conv * 8, (size_conv, size_conv),
                          activation='relu',
                          padding='same')(fc2)

    up1 = concatenate([UpSampling2D(size=(2, 2))(fc2), conv3], axis=3)

    conv6 = Conv2DTranspose(nb_conv * 2, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(up1)
    conv6 = Conv2DTranspose(nb_conv * 2, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(conv6)

    up2 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv2], axis=3)

    conv7 = Conv2DTranspose(nb_conv * 2, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(up2)
    conv7 = Conv2DTranspose(nb_conv * 2, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(conv7)

    up3 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv1], axis=3)

    conv8 = Conv2DTranspose(nb_conv, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(up3)
    conv8 = Conv2DTranspose(nb_conv, (size_conv, size_conv),
                            activation='relu',
                            padding='same')(conv8)

    conv8 = Conv2DTranspose(1, (3, 3), activation='relu',
                            padding='same')(conv8)

    mdl = Model(inputs=inputs, outputs=conv8)
    if nb_gpu > 1:
        mdl = multi_gpu_model(mdl, nb_gpu)

    mdl.compile(loss='mse', optimizer='Adam')
    return mdl
コード例 #29
0
ファイル: train_utils.py プロジェクト: xies/deepcell-tf
 def __init__(self, ser_model, gpus):
     pmodel = multi_gpu_model(ser_model, gpus)
     self.__dict__.update(pmodel.__dict__)
     self._smodel = ser_model
コード例 #30
0
def train(parser):
    config = json.load(open('./setting.json'))
    d_num = parser.d_num
    im_size = 256
    weight_save_dir = config['weight_save_dir']
    weight_dir = os.path.join(weight_save_dir, str(d_num))
    os.makedirs(weight_dir,exist_ok=True) 
    weight_file=os.path.join(weight_dir,dt.today().strftime("%m%d")+'.h5')



    START_TIME = time.time()
    reporter = Reporter(parser=parser)
    loader = Loader(parser=parser)

    train_gen, valid_gen, test_gen = loader.return_gen(False)
    train_steps, valid_steps, test_steps = loader.return_step()
    # ---------------------------model----------------------------------

    input_channel_count = parser.input_channel
    output_channel_count = 3
    first_layer_filter_count = parser.filter

    if parser.eito:
        network = UNet8(input_channel_count, output_channel_count, first_layer_filter_count, im_size=im_size, parser=parser)
    else:
        network = UNet(input_channel_count, output_channel_count, first_layer_filter_count, im_size=im_size, parser=parser)


    model = network.get_model()
    if not ON_WIN:
        model = multi_gpu_model(model, gpus=2)
    
    optimizer = tf.keras.optimizers.Adam(lr=parser.trainrate)
    # model.compile(loss=[DiceLossByClass(im_size, 3).dice_coef_loss], optimizer=optimizer, metrics=[dice, dice_1, dice_2])
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=[dice, dice_1, dice_2])
    model.summary()
    # ---------------------------training----------------------------------

    batch_size = parser.batch_size
    epochs = parser.epoch

    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.9
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    logdir = os.path.join('./logs', dt.today().strftime("%Y%m%d_%H%M"))
    os.makedirs(logdir, exist_ok=True)

    tb_cb = TensorBoard(log_dir=logdir, histogram_freq=0, write_graph=True, write_images=True)
    es_cb = EarlyStopping(monitor='val_loss', patience=parser.early_stopping, verbose=1, mode='auto')
    mc_cb = ModelCheckpoint(filepath=weight_file, monitor='val_loss', verbose=1, save_best_only=True,
                            save_weights_only=False, mode='min', period=1)
    print('dnum is:',d_num)
    print("start training.")
    print(valid_steps)
    # Pythonジェネレータ(またはSequenceのインスタンス)によりバッチ毎に生成されたデータでモデルを訓練します.
    history = model.fit_generator(
        generator=train_gen,
        steps_per_epoch=train_steps,
        epochs=epochs,
        max_queue_size=10 if ON_WIN else 32,
        workers=1 if ON_WIN else WORKERS * gpu_count,
        use_multiprocessing=False,
        validation_steps=valid_steps,
        validation_data=valid_gen,
        # use_multiprocessing=True,
        callbacks=[es_cb, tb_cb,mc_cb])

    print("finish training. And start making predict.")

    # ---------------------------predict----------------------------------

    test_preds = model.predict_generator(test_gen, steps=test_steps, verbose=1)
    ELAPSED_TIME = int(time.time() - START_TIME)
    reporter.add_log_documents(f'ELAPSED_TIME:{ELAPSED_TIME} [sec]')

    # ---------------------------report----------------------------------

    parser.save_logs = True
    if parser.save_logs:
        reporter.add_val_loss(history.history['val_loss'])
        reporter.add_val_dice(history.history['val_dice'])

        reporter.add_model_name(network.__class__.__name__)
        reporter.generate_main_dir()
        reporter.plot_history(history)
        reporter.save_params(history)

        train_gen, valid_gen, test_gen, output_gen_path = loader.return_gen(return_path=True)

        for i in range(min(train_steps, SAVE_BATCH_SIZE)):
            batch_input, batch_teach = next(train_gen)
            batch_preds = model.predict(batch_input)
            reporter.plot_predict(batch_input, batch_preds, batch_teach, 'train', batch_num=i)

        for i in range(min(valid_steps, SAVE_BATCH_SIZE)):
            batch_input, batch_teach = next(valid_gen)
            batch_preds = model.predict(batch_input)
            reporter.plot_predict(batch_input, batch_preds, batch_teach, 'valid', batch_num=i)

        for i in range(min(test_steps, SAVE_BATCH_SIZE)):
            batch_input, batch_teach = next(test_gen)
            batch_preds = model.predict(batch_input)
            reporter.plot_predict(batch_input, batch_preds, batch_teach, 'test', batch_num=i)

    if parser.output_predict:
        print('make output_predict')
        _, _, test_gen, output_gen_path = loader.return_gen(return_path=True)
        for i in range(test_steps):
            batch_output_path = next(output_gen_path)
            batch_input, batch_teach = next(test_gen)
            batch_preds = model.predict(batch_input)
            reporter.output_predict(batch_preds,batch_output_path,suffix=parser.suffix)