コード例 #1
0
ファイル: test_multivariate.py プロジェクト: wiredfool/scipy
    def test_1D_is_invgamma(self):
        # The 1-dimensional inverse Wishart with an identity scale matrix is
        # just an inverse gamma distribution.
        # Test variance, mean, pdf
        # Kolgomorov-Smirnov test for rvs
        np.random.seed(482974)

        sn = 500
        dim = 1
        scale = np.eye(dim)

        df_range = np.arange(5, 20, 2, dtype=float)
        X = np.linspace(0.1,10,num=10)
        for df in df_range:
            iw = invwishart(df, scale)
            ig = invgamma(df/2, scale=1./2)

            # Statistics
            assert_allclose(iw.var(), ig.var())
            assert_allclose(iw.mean(), ig.mean())

            # PDF
            assert_allclose(iw.pdf(X), ig.pdf(X))

            # rvs
            rvs = iw.rvs(size=sn)
            args = (df/2, 0, 1./2)
            alpha = 0.01
            check_distribution_rvs('invgamma', args, alpha, rvs)
コード例 #2
0
ファイル: test_multivariate.py プロジェクト: wiredfool/scipy
    def test_is_scaled_chisquared(self):
        # The 2-dimensional Wishart with an arbitrary scale matrix can be
        # transformed to a scaled chi-squared distribution.
        # For :math:`S \sim W_p(V,n)` and :math:`\lambda \in \mathbb{R}^p` we have
        # :math:`\lambda' S \lambda \sim \lambda' V \lambda \times \chi^2(n)`
        np.random.seed(482974)

        sn = 500
        df = 10
        dim = 4
        # Construct an arbitrary positive definite matrix
        scale = np.diag(np.arange(4)+1)
        scale[np.tril_indices(4, k=-1)] = np.arange(6)
        scale = np.dot(scale.T, scale)
        # Use :math:`\lambda = [1, \dots, 1]'`
        lamda = np.ones((dim,1))
        sigma_lamda = lamda.T.dot(scale).dot(lamda).squeeze()
        w = wishart(df, sigma_lamda)
        c = chi2(df, scale=sigma_lamda)

        # Statistics
        assert_allclose(w.var(), c.var())
        assert_allclose(w.mean(), c.mean())
        assert_allclose(w.entropy(), c.entropy())

        # PDF
        X = np.linspace(0.1,10,num=10)
        assert_allclose(w.pdf(X), c.pdf(X))

        # rvs
        rvs = w.rvs(size=sn)
        args = (df,0,sigma_lamda)
        alpha = 0.01
        check_distribution_rvs('chi2', args, alpha, rvs)
コード例 #3
0
ファイル: test_multivariate.py プロジェクト: wiredfool/scipy
    def test_1D_is_chisquared(self):
        # The 1-dimensional Wishart with an identity scale matrix is just a
        # chi-squared distribution.
        # Test variance, mean, entropy, pdf
        # Kolgomorov-Smirnov test for rvs
        np.random.seed(482974)

        sn = 500
        dim = 1
        scale = np.eye(dim)

        df_range = np.arange(1, 10, 2, dtype=float)
        X = np.linspace(0.1,10,num=10)
        for df in df_range:
            w = wishart(df, scale)
            c = chi2(df)

            # Statistics
            assert_allclose(w.var(), c.var())
            assert_allclose(w.mean(), c.mean())
            assert_allclose(w.entropy(), c.entropy())

            # PDF
            assert_allclose(w.pdf(X), c.pdf(X))

            # rvs
            rvs = w.rvs(size=sn)
            args = (df,)
            alpha = 0.01
            check_distribution_rvs('chi2', args, alpha, rvs)
コード例 #4
0
ファイル: test_multivariate.py プロジェクト: wodole/scipy
    def test_1D_is_invgamma(self):
        # The 1-dimensional inverse Wishart with an identity scale matrix is
        # just an inverse gamma distribution.
        # Test variance, mean, pdf
        # Kolgomorov-Smirnov test for rvs
        np.random.seed(482974)

        sn = 500
        dim = 1
        scale = np.eye(dim)

        df_range = np.arange(5, 20, 2, dtype=float)
        X = np.linspace(0.1, 10, num=10)
        for df in df_range:
            iw = invwishart(df, scale)
            ig = invgamma(df / 2, scale=1. / 2)

            # Statistics
            assert_allclose(iw.var(), ig.var())
            assert_allclose(iw.mean(), ig.mean())

            # PDF
            assert_allclose(iw.pdf(X), ig.pdf(X))

            # rvs
            rvs = iw.rvs(size=sn)
            args = (df / 2, 0, 1. / 2)
            alpha = 0.01
            check_distribution_rvs('invgamma', args, alpha, rvs)
コード例 #5
0
ファイル: test_multivariate.py プロジェクト: wodole/scipy
    def test_is_scaled_chisquared(self):
        # The 2-dimensional Wishart with an arbitrary scale matrix can be
        # transformed to a scaled chi-squared distribution.
        # For :math:`S \sim W_p(V,n)` and :math:`\lambda \in \mathbb{R}^p` we have
        # :math:`\lambda' S \lambda \sim \lambda' V \lambda \times \chi^2(n)`
        np.random.seed(482974)

        sn = 500
        df = 10
        dim = 4
        # Construct an arbitrary positive definite matrix
        scale = np.diag(np.arange(4) + 1)
        scale[np.tril_indices(4, k=-1)] = np.arange(6)
        scale = np.dot(scale.T, scale)
        # Use :math:`\lambda = [1, \dots, 1]'`
        lamda = np.ones((dim, 1))
        sigma_lamda = lamda.T.dot(scale).dot(lamda).squeeze()
        w = wishart(df, sigma_lamda)
        c = chi2(df, scale=sigma_lamda)

        # Statistics
        assert_allclose(w.var(), c.var())
        assert_allclose(w.mean(), c.mean())
        assert_allclose(w.entropy(), c.entropy())

        # PDF
        X = np.linspace(0.1, 10, num=10)
        assert_allclose(w.pdf(X), c.pdf(X))

        # rvs
        rvs = w.rvs(size=sn)
        args = (df, 0, sigma_lamda)
        alpha = 0.01
        check_distribution_rvs('chi2', args, alpha, rvs)
コード例 #6
0
ファイル: test_multivariate.py プロジェクト: wodole/scipy
    def test_1D_is_chisquared(self):
        # The 1-dimensional Wishart with an identity scale matrix is just a
        # chi-squared distribution.
        # Test variance, mean, entropy, pdf
        # Kolgomorov-Smirnov test for rvs
        np.random.seed(482974)

        sn = 500
        dim = 1
        scale = np.eye(dim)

        df_range = np.arange(1, 10, 2, dtype=float)
        X = np.linspace(0.1, 10, num=10)
        for df in df_range:
            w = wishart(df, scale)
            c = chi2(df)

            # Statistics
            assert_allclose(w.var(), c.var())
            assert_allclose(w.mean(), c.mean())
            assert_allclose(w.entropy(), c.entropy())

            # PDF
            assert_allclose(w.pdf(X), c.pdf(X))

            # rvs
            rvs = w.rvs(size=sn)
            args = (df, )
            alpha = 0.01
            check_distribution_rvs('chi2', args, alpha, rvs)