def export_averagepool_2d_strides(): # type: () -> None """ input_shape: [1, 3, 32, 32] output_shape: [1, 3, 10, 10] """ node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[5, 5], strides=[3, 3], ) x = np.random.randn(1, 3, 32, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = (5, 5) strides = (3, 3) out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG') expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_strides')
def export_averagepool_2d_pads(): # type: () -> None """ input_shape: [1, 3, 28, 28] output_shape: [1, 3, 30, 30] pad_shape: [4, 4] -> [2, 2, 2, 2] by axis """ node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[3, 3], pads=[2, 2, 2, 2], ) x = np.random.randn(1, 3, 28, 28).astype(np.float32) x_shape = np.shape(x) kernel_shape = (3, 3) strides = (1, 1) pad_bottom = 2 pad_top = 2 pad_right = 2 pad_left = 2 pad_shape = [pad_top + pad_bottom, pad_left + pad_right] out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides) padded = np.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=np.nan, ) y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG') expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_pads')
def export_averagepool_3d_default(): # type: () -> None """ input_shape: [1, 3, 32, 32, 32] output_shape: [1, 3, 31, 31, 31] """ node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2, 2], ) x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = [2, 2, 2] strides = [1, 1, 1] out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'AVG') expect(node, inputs=[x], outputs=[y], name='test_averagepool_3d_default')
def export_averagepool_2d_same_lower(): # type: () -> None """ input_shape: [1, 3, 32, 32] output_shape: [1, 3, 32, 32] pad_shape: [1, 1] -> [1, 0, 1, 0] by axis """ node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2], auto_pad='SAME_LOWER', ) x = np.random.randn(1, 3, 32, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = get_output_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides) pad_shape = get_pad_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape) pad_bottom = pad_shape[0] // 2 pad_top = pad_shape[0] - pad_bottom pad_right = pad_shape[1] // 2 pad_left = pad_shape[1] - pad_right padded = np.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=np.nan, ) y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG') expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_same_lower')