예제 #1
0
    def export_averagepool_2d_strides():  # type: () -> None
        """
        input_shape: [1, 3, 32, 32]
        output_shape: [1, 3, 10, 10]
        """
        node = onnx.helper.make_node(
            'AveragePool',
            inputs=['x'],
            outputs=['y'],
            kernel_shape=[5, 5],
            strides=[3, 3],
        )
        x = np.random.randn(1, 3, 32, 32).astype(np.float32)
        x_shape = np.shape(x)
        kernel_shape = (5, 5)
        strides = (3, 3)
        out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape,
                                     strides)
        padded = x
        y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0),
                 'AVG')

        expect(node,
               inputs=[x],
               outputs=[y],
               name='test_averagepool_2d_strides')
예제 #2
0
    def export_averagepool_2d_pads():  # type: () -> None
        """
        input_shape: [1, 3, 28, 28]
        output_shape: [1, 3, 30, 30]
        pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
        """
        node = onnx.helper.make_node(
            'AveragePool',
            inputs=['x'],
            outputs=['y'],
            kernel_shape=[3, 3],
            pads=[2, 2, 2, 2],
        )
        x = np.random.randn(1, 3, 28, 28).astype(np.float32)
        x_shape = np.shape(x)
        kernel_shape = (3, 3)
        strides = (1, 1)
        pad_bottom = 2
        pad_top = 2
        pad_right = 2
        pad_left = 2
        pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
        out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape),
                                     kernel_shape, strides)
        padded = np.pad(
            x,
            ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
            mode='constant',
            constant_values=np.nan,
        )
        y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape,
                 'AVG')

        expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_pads')
예제 #3
0
    def export_averagepool_3d_default():  # type: () -> None
        """
        input_shape: [1, 3, 32, 32, 32]
        output_shape: [1, 3, 31, 31, 31]
        """
        node = onnx.helper.make_node(
            'AveragePool',
            inputs=['x'],
            outputs=['y'],
            kernel_shape=[2, 2, 2],
        )
        x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
        x_shape = np.shape(x)
        kernel_shape = [2, 2, 2]
        strides = [1, 1, 1]
        out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape,
                                     strides)
        padded = x
        y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0],
                 'AVG')

        expect(node,
               inputs=[x],
               outputs=[y],
               name='test_averagepool_3d_default')
예제 #4
0
    def export_averagepool_2d_same_lower():  # type: () -> None
        """
        input_shape: [1, 3, 32, 32]
        output_shape: [1, 3, 32, 32]
        pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
        """
        node = onnx.helper.make_node(
            'AveragePool',
            inputs=['x'],
            outputs=['y'],
            kernel_shape=[2, 2],
            auto_pad='SAME_LOWER',
        )
        x = np.random.randn(1, 3, 32, 32).astype(np.float32)
        x_shape = np.shape(x)
        kernel_shape = (2, 2)
        strides = (1, 1)
        out_shape = get_output_shape('SAME_LOWER', x_shape[2:], kernel_shape,
                                     strides)
        pad_shape = get_pad_shape('SAME_LOWER', x_shape[2:], kernel_shape,
                                  strides, out_shape)
        pad_bottom = pad_shape[0] // 2
        pad_top = pad_shape[0] - pad_bottom
        pad_right = pad_shape[1] // 2
        pad_left = pad_shape[1] - pad_right
        padded = np.pad(
            x,
            ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
            mode='constant',
            constant_values=np.nan,
        )
        y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape,
                 'AVG')

        expect(node,
               inputs=[x],
               outputs=[y],
               name='test_averagepool_2d_same_lower')