def get_compiled_theano_functions(N_QUAD_PTS):
        # resonance j and k
        j,k = T.lscalars('jk')
        s = (j-k) / k

        # Planet masses: m1,m2
        m1,m2 = T.dscalars(2)
        Mstar = 1
        eta0 = Mstar
        eta1 = eta0+m1
        eta2 =eta1+m2
        mtilde1 = m1 * (eta0/eta1)
        Mtilde1 = Mstar * (eta1/eta0)
        mtilde2 = m2 * (eta1/eta2)
        Mtilde2 = Mstar * (eta2/eta1)
        eps = m1 * m2 / (mtilde1 + mtilde2) / Mstar
        beta1 = mtilde1 / (mtilde1 + mtilde2)
        beta2 = mtilde2 / (mtilde1 + mtilde2)
        gamma = mtilde2/mtilde1
        
        # Angle variable for averaging over
        Q = T.dvector('Q')

        # Dynamical variables:
        dyvars = T.vector()
        sigma1, sigma2, I1, I2, amd = [dyvars[i] for i in range(5)]


        # Quadrature weights
        quad_weights = T.dvector('w')
        
        # Set lambda2=0
        l2 = T.constant(0.)
        
        l1 = -1 * k * Q 
        w1 = (1+s) * l2 - s * l1 - sigma1
        w2 = (1+s) * l2 - s * l1 - sigma2
        
        Gamma1 = I1
        Gamma2 = I2
        
        # Resonant semi-major axis ratio
        alpha_res = ((j-k)/j)**(2/3) * ((Mstar + m1) / (Mstar+m2))**(1/3)
        P0 =  k * ( beta2 - beta1 * T.sqrt(alpha_res) ) / 2
        P = P0 - k * (s+1/2) * amd
        Ltot = beta1 * T.sqrt(alpha_res) + beta2 - amd
        L1 = Ltot/2 - P / k - s * (I1 + I2)
        L2 = Ltot/2 + P / k + (1 + s) * (I1 + I2)
        
        
        a1 = (L1 / beta1 )**2 * eta0 / eta1
        e1 = T.sqrt(1-(1-(Gamma1 / L1))**2)
        
        a2 = (L2 / beta2 )**2 * eta1 / eta2
        e2 = T.sqrt(1-(1-(Gamma2 / L2))**2)
        
        Hkep = - eta1 * beta1 / (2 * a1) / eta0  - eta2 * beta2 / (2 * a2) / eta1
        
        alpha = a1 / a2
        
        ko = KeplerOp()
        
        M1 = l1 - w1
        M2 = l2 - w2
        
        sinf1,cosf1 =  ko( M1, e1 + T.zeros_like(M1) )
        sinf2,cosf2 =  ko( M2, e2 + T.zeros_like(M2) )
        
        R = calc_DisturbingFunction_with_sinf_cosf(alpha,e1,e2,w1,w2,sinf1,cosf1,sinf2,cosf2)
        Rav = R.dot(quad_weights)
        
        Hpert = -eps * Rav / a2
        Htot = Hkep + Hpert

        ######################
        # Dissipative dynamics
        ######################
        tau_alpha_0, K1, K2, p = T.dscalars(4)
        sigma1dot_dis,sigma2dot_dis,I1dot_dis,I2dot_dis,amddot_dis = T.dscalars(5)
        sigma1dot_dis,sigma2dot_dis = T.as_tensor(0.),T.as_tensor(0.)
        
        # Define timescales
        tau_e1 = tau_alpha_0 / K1
        tau_e2 = tau_alpha_0 / K2
        tau_a1_0 = -1 * tau_alpha_0 * (1+alpha_res * gamma)/ (alpha_res * gamma)
        tau_a2_0 = -1 * alpha_res * gamma * tau_a1_0
        tau_a1 = 1 / (1/tau_a1_0 + 2 * p * e1*e1 / tau_e1 )
        tau_a2 = 1 / (1/tau_a2_0 + 2 * p * e2*e2 / tau_e2 )

        # Time derivative of orbital elements
        e1dot_dis = -1*e1 / tau_e1
        e2dot_dis = -1*e2 / tau_e2
        a1dot_dis = -1*a1 / tau_a1
        a2dot_dis = -1*a2 / tau_a2

        # Time derivatives of canonical variables
        I1dot_dis = L1 * e1 * e1dot_dis / ( T.sqrt(1-e1*e1) ) - I1 / tau_a1 / 2
        I2dot_dis = L2 * e2 * e2dot_dis / ( T.sqrt(1-e2*e2) ) - I2 / tau_a2 / 2
        Pdot_dis = -1*k * ( L2 / tau_a2 - L1 / tau_a1) / 4 - k * (s + 1/2) * (I1dot_dis + I2dot_dis)
        amddot_dis = Pdot_dis / T.grad(P,amd)

        #####################################################
        # Set parameters for compiling functions with Theano
        #####################################################
        
        # Get numerical quadrature nodes and weights
        nodes,weights = np.polynomial.legendre.leggauss(N_QUAD_PTS)
        
        # Rescale for integration interval from [-1,1] to [-pi,pi]
        nodes = nodes * np.pi
        weights = weights * 0.5
        
        # 'givens' will fix some parameters of Theano functions compiled below
        givens = [(Q,nodes),(quad_weights,weights)]

        # 'ins' will set the inputs of Theano functions compiled below
        #   Note: 'extra_ins' will be passed as values of object attributes
        #   of the 'ResonanceEquations' class 'defined below
        extra_ins = [m1,m2,j,k,tau_alpha_0,K1,K2,p]
        ins = [dyvars] + extra_ins
        

        # Define flows and jacobians.

        #  Conservative flow
        gradHtot = T.grad(Htot,wrt=dyvars)
        hessHtot = theano.gradient.hessian(Htot,wrt=dyvars)
        Jtens = T.as_tensor(np.pad(getOmegaMatrix(2),(0,1),'constant'))
        H_flow_vec = Jtens.dot(gradHtot)
        H_flow_jac = Jtens.dot(hessHtot)
        
        #  Dissipative flow
        dis_flow_vec = T.stack(sigma1dot_dis,sigma2dot_dis,I1dot_dis,I2dot_dis,amddot_dis)
        dis_flow_jac = theano.gradient.jacobian(dis_flow_vec,dyvars)
        
        
        # Extras
        dis_timescales = [tau_a1_0,tau_a2_0,tau_e1,tau_e2]
        orbels = [a1,e1,sigma1*k,a2,e2,sigma2*k]
        ##########################
        # Compile Theano functions
        ##########################
        
        if not DEBUG:
            # Note that compiling can take a while
            #  so I've put a debugging switch here 
            #  to skip evaluating these functions when
            #  desired.
            Rav_fn = theano.function(
                inputs=ins,
                outputs=Rav,
                givens=givens,
                on_unused_input='ignore'
            )
            Hpert_av_fn = theano.function(
                inputs=ins,
                outputs=Hpert,
                givens=givens,
                on_unused_input='ignore'
            )
            Htot_fn = theano.function(
                inputs=ins,
                outputs=Htot,
                givens=givens,
                on_unused_input='ignore'
            )
            
            H_flow_vec_fn = theano.function(
                inputs=ins,
                outputs=H_flow_vec,
                givens=givens,
                on_unused_input='ignore'
            )
            
            H_flow_jac_fn = theano.function(
                inputs=ins,
                outputs=H_flow_jac,
                givens=givens,
                on_unused_input='ignore'
            )
            
            dis_flow_vec_fn = theano.function(
                inputs=ins,
                outputs=dis_flow_vec,
                givens=givens,
                on_unused_input='ignore'
            )
            
            dis_flow_jac_fn = theano.function(
                inputs=ins,
                outputs=dis_flow_jac,
                givens=givens,
                on_unused_input='ignore'
            )

            dis_timescales_fn =theano.function(
                inputs=extra_ins,
                outputs=dis_timescales,
                givens=givens,
                on_unused_input='ignore'
            )

            orbels_fn = theano.function(
                inputs=ins,
                outputs=orbels,
                givens=givens,
                on_unused_input='ignore'
            )

        else:
            return  [lambda x: x for _ in range(8)]
        
        return Rav_fn,Hpert_av_fn,Htot_fn,H_flow_vec_fn,H_flow_jac_fn,dis_flow_vec_fn,dis_flow_jac_fn,dis_timescales_fn,orbels_fn
def get_compiled_Hkep_Hpert_full():
        # resonance j and k
        j,k = T.lscalars('jk')
        s = (j-k) / k

        # Planet masses: m1,m2
        m1,m2 = T.dscalars(2)
        Mstar = 1
        eta0 = Mstar
        eta1 = eta0+m1
        eta2 =eta1+m2
        mtilde1 = m1 * (eta0/eta1)
        Mtilde1 = Mstar * (eta1/eta0)
        mtilde2 = m2 * (eta1/eta2)
        Mtilde2 = Mstar * (eta2/eta1)
        eps = m1 * m2 / (mtilde1 + mtilde2) / Mstar
        beta1 = mtilde1 / (mtilde1 + mtilde2)
        beta2 = mtilde2 / (mtilde1 + mtilde2)
        gamma = mtilde2/mtilde1
        

        # Dynamical variables:
        dyvars = T.vector()
        Q,sigma1, sigma2, I1, I2, amd = [dyvars[i] for i in range(6)]

        # Set lambda2=0
        l2 = T.constant(0.)
        l1 = -1 * k * Q 
        w1 = (1+s) * l2 - s * l1 - sigma1
        w2 = (1+s) * l2 - s * l1 - sigma2
        
        Gamma1 = I1
        Gamma2 = I2
        
        # Resonant semi-major axis ratio
        alpha_res = ((j-k)/j)**(2/3) * ((Mstar + m1) / (Mstar+m2))**(1/3)
        P0 = k * ( beta2 - beta1 * T.sqrt(alpha_res) ) / 2
        P = P0 - k * (s+1/2) * amd
        
        Ltot = beta1 * T.sqrt(alpha_res) + beta2 - amd
        L1 = Ltot/2 - P / k - s * (I1 + I2)
        L2 = Ltot/2 + P / k + (1 + s) * (I1 + I2)
        
        a1 = (L1 / beta1 )**2 * eta0 / eta1
        e1 = T.sqrt(1-(1-(Gamma1 / L1))**2)
        
        a2 = (L2 / beta2 )**2 * eta1 / eta2
        e2 = T.sqrt(1-(1-(Gamma2 / L2))**2)
        
        Hkep = - eta1 * beta1 / (2 * a1) / eta0  - eta2 * beta2 / (2 * a2) / eta1
        
        alpha = a1 / a2
        
        ko = KeplerOp()
        
        M1 = l1 - w1
        M2 = l2 - w2
        
        sinf1,cosf1 =  ko( M1, e1 + T.zeros_like(M1) )
        sinf2,cosf2 =  ko( M2, e2 + T.zeros_like(M2) )
        
        R = calc_DisturbingFunction_with_sinf_cosf(alpha,e1,e2,w1,w2,sinf1,cosf1,sinf2,cosf2)
        
        Hpert = -eps * R / a2
        
        omega_syn = T.sqrt(eta2/eta1)/a2**1.5 - T.sqrt(eta1/eta0) / a1**1.5
        gradHpert = T.grad(Hpert,wrt=dyvars)
        gradHkep = T.grad(Hkep,wrt=dyvars)
        grad_omega_syn = T.grad(omega_syn,wrt=dyvars)

        extra_ins = [m1,m2,j,k]
        ins = [dyvars] + extra_ins

        # Scalars
        omega_syn_fn = theano.function(
            inputs=ins,
            outputs=omega_syn,
            givens=None,
            on_unused_input='ignore'
        )
        Hpert_fn = theano.function(
            inputs=ins,
            outputs=Hpert,
            givens=None,
            on_unused_input='ignore'
        )
        Hkep_fn = theano.function(
            inputs=ins,
            outputs=Hkep,
            givens=None,
            on_unused_input='ignore'
        )
        # gradients
        grad_omega_syn_fn = theano.function(
            inputs=ins,
            outputs=grad_omega_syn,
            givens=None,
            on_unused_input='ignore'
        )
        gradHpert_fn = theano.function(
            inputs=ins,
            outputs=gradHpert,
            givens=None,
            on_unused_input='ignore'
        )
        gradHkep_fn = theano.function(
            inputs=ins,
            outputs=gradHkep,
            givens=None,
            on_unused_input='ignore'
        )
        return omega_syn_fn,Hkep_fn,Hpert_fn,grad_omega_syn_fn,gradHkep_fn,gradHpert_fn
コード例 #3
0
 def _index_variables(self, basename='index'):
     return T.lscalars(
         *['%s_%d' % (basename, i) for i in xrange(self.sequence_length)])
コード例 #4
0
ファイル: spatialMMR.py プロジェクト: MilesCranmer/celmech
def _get_compiled_theano_functions(N_QUAD_PTS):
    # Planet masses: m1,m2
    m1, m2 = T.dscalars(2)
    mstar = 1
    mu1 = m1 * mstar / (mstar + m1)
    mu2 = m2 * mstar / (mstar + m2)
    Mstar1 = mstar + m1
    Mstar2 = mstar + m2
    beta1 = mu1 * T.sqrt(Mstar1 / mstar) / (mu1 + mu2)
    beta2 = mu2 * T.sqrt(Mstar2 / mstar) / (mu1 + mu2)
    j, k = T.lscalars('jk')
    s = (j - k) / k

    # Angle variable for averaging over
    psi = T.dvector()

    # Quadrature weights
    quad_weights = T.dvector('w')

    # Dynamical variables:
    Ndof = 3
    Nconst = 1
    dyvars = T.vector()
    y1, y2, y_inc, x1, x2, x_inc, amd = [
        dyvars[i] for i in range(2 * Ndof + Nconst)
    ]

    a20 = T.constant(1.)
    a10 = ((j - k) / j)**(2 / 3) * (Mstar1 / Mstar2)**(1 / 3)
    L10 = beta1 * T.sqrt(a10)
    L20 = beta2 * T.sqrt(a20)
    Ltot = L10 + L20
    f = L10 / L20
    L2res = (Ltot + amd) / (1 + f)
    Psi = -k * (s * L2res + (1 + s) * f * L2res)
    ###
    # actions
    ###
    I1 = 0.5 * (x1 * x1 + y1 * y1)
    I2 = 0.5 * (x2 * x2 + y2 * y2)
    Phi = 0.5 * (x_inc * x_inc + y_inc * y_inc)
    L1 = -s * Ltot - Psi / k - s * (I1 + I2 + Phi)
    L2 = (1 + s) * Ltot + Psi / k + (1 + s) * (I1 + I2 + Phi)

    # Set lambda2=0
    l2 = T.constant(0.)
    l1 = -1 * k * psi
    theta_res = (1 + s) * l2 - s * l1
    cos_theta_res = T.cos(theta_res)
    sin_theta_res = T.sin(theta_res)

    kappa1 = x1 * cos_theta_res + y1 * sin_theta_res
    eta1 = y1 * cos_theta_res - x1 * sin_theta_res

    kappa2 = x2 * cos_theta_res + y2 * sin_theta_res
    eta2 = y2 * cos_theta_res - x2 * sin_theta_res

    sigma = x_inc * cos_theta_res + y_inc * sin_theta_res
    rho = y_inc * cos_theta_res - x_inc * sin_theta_res
    # y = (sigma-i*rho)/sqrt(2)
    #   = sqrt(Phi) * exp[i (Omega1+Omega2) / 2]
    # Malige+ 2002,  Eqs 20 and 21
    r2byr1 = (L2 - L1 - I2 + I1) / Ltot
    sigma1 = rho * T.sqrt(1 + r2byr1) / T.sqrt(2)
    sigma2 = -rho * T.sqrt(1 - r2byr1) / T.sqrt(2)
    rho1 = -sigma * T.sqrt(1 + r2byr1) / T.sqrt(2)
    rho2 = sigma * T.sqrt(1 - r2byr1) / T.sqrt(2)

    Xre1 = kappa1 / T.sqrt(L1)
    Xim1 = -eta1 / T.sqrt(L1)
    Yre1 = 0.5 * sigma1 / T.sqrt(L1)
    Yim1 = -0.5 * rho1 / T.sqrt(L1)

    Xre2 = kappa2 / T.sqrt(L2)
    Xim2 = -eta2 / T.sqrt(L2)
    Yre2 = 0.5 * sigma2 / T.sqrt(L2)
    Yim2 = -0.5 * rho2 / T.sqrt(L2)

    absX1_sq = 2 * I1 / L1
    absX2_sq = 2 * I2 / L2
    X_to_z1 = T.sqrt(1 - absX1_sq / 4)
    X_to_z2 = T.sqrt(1 - absX2_sq / 4)
    Y_to_zeta1 = 1 / T.sqrt(1 - absX1_sq / 2)
    Y_to_zeta2 = 1 / T.sqrt(1 - absX2_sq / 2)

    a1 = (L1 / beta1)**2
    k1 = Xre1 * X_to_z1
    h1 = Xim1 * X_to_z1
    q1 = Yre1 * Y_to_zeta1
    p1 = Yim1 * Y_to_zeta1
    e1 = T.sqrt(absX1_sq) * X_to_z1
    inc1 = 2 * T.arcsin(T.sqrt(p1 * p1 + q1 * q1))

    a2 = (L2 / beta2)**2
    k2 = Xre2 * X_to_z2
    h2 = Xim2 * X_to_z2
    q2 = Yre2 * Y_to_zeta2
    p2 = Yim2 * Y_to_zeta2
    e2 = T.sqrt(absX2_sq) * X_to_z2
    inc2 = 2 * T.arcsin(T.sqrt(p2 * p2 + q2 * q2))

    beta1p = T.sqrt(Mstar1) * beta1
    beta2p = T.sqrt(Mstar2) * beta2
    Hkep = -0.5 * beta1p / a1 - 0.5 * beta2p / a2

    Hdir, Hind = calc_Hint_components_spatial(a1, a2, l1, l2, h1, k1, h2, k2,
                                              p1, q1, p2, q2, Mstar1, Mstar2)
    eps = m1 * m2 / (mu1 + mu2) / T.sqrt(mstar)
    Hpert = (Hdir + Hind / mstar)
    Hpert_av = Hpert.dot(quad_weights)
    Htot = Hkep + eps * Hpert_av

    #####################################################
    # Set parameters for compiling functions with Theano
    #####################################################

    # Get numerical quadrature nodes and weights
    nodes, weights = np.polynomial.legendre.leggauss(N_QUAD_PTS)

    # Rescale for integration interval from [-1,1] to [-pi,pi]
    nodes = nodes * np.pi
    weights = weights * 0.5

    # 'givens' will fix some parameters of Theano functions compiled below
    givens = [(psi, nodes), (quad_weights, weights)]

    # 'ins' will set the inputs of Theano functions compiled below
    #   Note: 'extra_ins' will be passed as values of object attributes
    #   of the 'ResonanceEquations' class 'defined below
    extra_ins = [m1, m2, j, k]
    ins = [dyvars] + extra_ins

    Stilde = Phi * (L2 - I2 - L1 + I1) / (Ltot)
    Q1 = 0.5 * (Phi + Stilde)
    Q2 = 0.5 * (Phi - Stilde)
    inc1 = T.arccos(1 - Q1 / (L1 - I1))
    inc2 = T.arccos(1 - Q2 / (L2 - I2))

    orbels = [
        a1, e1, inc1, k * T.arctan2(y1, x1), a2, e2, inc2,
        k * T.arctan2(y2, x2),
        T.arctan2(y_inc, x_inc)
    ]
    orbels_dict = dict(
        zip([
            'a1', 'e1', 'inc1', 'theta1', 'a2', 'e2', 'inc2', 'theta2', 'phi'
        ], orbels))

    actions = [L1, L2, I1, I2, Q1, Q2]
    actions_dict = dict(
        zip(['L1', 'L2', 'Gamma1', 'Gamma2', 'Q1', 'Q2'], actions))

    #  Conservative flow
    gradHtot = T.grad(Htot, wrt=dyvars)
    gradHpert = T.grad(Hpert_av, wrt=dyvars)
    gradHkep = T.grad(Hkep, wrt=dyvars)

    hessHtot = theano.gradient.hessian(Htot, wrt=dyvars)
    hessHpert = theano.gradient.hessian(Hpert_av, wrt=dyvars)
    hessHkep = theano.gradient.hessian(Hkep, wrt=dyvars)

    Jtens = T.as_tensor(np.pad(getOmegaMatrix(Ndof), (0, Nconst), 'constant'))
    H_flow_vec = Jtens.dot(gradHtot)
    Hpert_flow_vec = Jtens.dot(gradHpert)
    Hkep_flow_vec = Jtens.dot(gradHkep)

    H_flow_jac = Jtens.dot(hessHtot)
    Hpert_flow_jac = Jtens.dot(hessHpert)
    Hkep_flow_jac = Jtens.dot(hessHkep)

    ##########################
    # Compile Theano functions
    ##########################
    func_dict = {
        # Hamiltonians
        'H': Htot,
        #'Hpert':Hpert_av,
        #'Hkep':Hkep,
        ## Hamiltonian flows
        'H_flow': H_flow_vec,
        #'Hpert_flow':Hpert_flow_vec,
        #'Hkep_flow':Hkep_flow_vec,
        ## Hamiltonian flow Jacobians
        'H_flow_jac': H_flow_jac,
        #'Hpert_flow_jac':Hpert_flow_jac,
        #'Hkep_flow_jac':Hkep_flow_jac,
        ## Extras
        'orbital_elements': orbels_dict,
        'actions': actions_dict
    }
    compiled_func_dict = dict()
    with tqdm(func_dict.items()) as t:
        for key, val in t:
            t.set_description("Compiling '{}'".format(key))
            if key is 'timescales':
                inputs = extra_ins
            else:
                inputs = ins
            cf = theano.function(inputs=inputs,
                                 outputs=val,
                                 givens=givens,
                                 on_unused_input='ignore')
            compiled_func_dict[key] = cf
    return compiled_func_dict
コード例 #5
0
ファイル: non-generative.py プロジェクト: kastnerkyle/ACE
		dual_X_hat =  T.nnet.sigmoid(T.dot(h,T.dot(h.T,X))/n_b) #shape: batch_size x n_x
		dual_recon_err = T.nnet.binary_crossentropy(dual_X_hat,X).sum() 
		
	h2 = dropout((T.tensordot(h, W_h2, [[1],[1]]) + b_h2).max(axis = 1), p_drop_hidden) #shape inside tensordot: batch_size x 2 x n_h2 
	h3 = dropout ((T.tensordot(h2, W_h3, [[1],[1]]) + b_h3).max(axis = 1), p_drop_hidden) #shape inside tensordot: batch_size x 2 x n_h3
	h3 = batchnorm(h3, epsilon=0)
	h4 = dropout ((T.tensordot(h3, W_h4, [[1],[1]]) + b_h4).max(axis = 1), p_drop_hidden) #shape inside tensordot: batch_size x 2 x n_h4
					
	prob_y = softmax(T.dot(h4, W_o)) #classification probabilities
	return [prob_y , dual_recon_err]
		
#symbolic variables	
X = T.fmatrix()
Y = T.fmatrix()
learning_rate = T.fscalar('learning_rate')
start, end = T.lscalars('start', 'end')

#weights and biases initialization
W_h = shared_normal((2, n_x, n_h))  
W_h2 = shared_normal((2, n_h, n_h2))
W_h3 = shared_normal((2, n_h2, n_h3)) 
W_h4 = shared_normal((2, n_h3, n_h4))
W_o  = shared_normal((n_h4, 10))
b_h = shared_normal((2, n_h), sigma = 0)  
b_h2 = shared_normal((2, n_h2), sigma = 0)
b_h3 = shared_normal((2, n_h3), sigma = 0)
b_h4 = shared_normal((2, n_h4), sigma = 0)

X = binomial(X) #internal binarization
#model calls	
[dout_prob_y, dout_dual_recon_err] = model_NG_ACE(X, batch_size, gaussian_err, 0.2, 0.5)  #with dropout
コード例 #6
0
def get_compiled_theano_functions(N_QUAD_PTS):
    # resonance j and k
    j, k = T.lscalars('jk')

    # Planet masses: m1,m2
    m1, m2 = T.dscalars(2)

    # resonance f and g coefficients
    f, g = T.dscalars(2)

    # Planet and star mass variables
    Mstar = 1
    mu1 = m1 / (Mstar + m1)
    mu2 = m2 / (Mstar + m2)
    eps = m1 * mu2 / (mu1 + mu2) / Mstar

    # Resonant semi-major axis ratio
    alpha = ((j - k) / j)**(2 / 3) * ((Mstar + m1) / (Mstar + m2))**(1 / 3)

    # Constants in Eq. (15)
    fTilde = T.sqrt((mu1 + mu2) / (mu1 * T.sqrt(alpha))) * f
    gTilde = T.sqrt((mu1 + mu2) / mu2) * g

    # Constant in Eq. (8)
    A = 1.5 * j * (mu1 + mu2) * (j / mu2 + (j - k) / mu1 / T.sqrt(alpha))

    # Dynamical variables:
    dyvars = T.vector()
    theta, theta_star, J, J_star = [dyvars[i] for i in range(4)]

    # Angle variable to average disturbing function over
    kappa = T.dvector()

    # Quadrature weights
    quad_weights = T.dvector('w')

    # Convert dynamical variables to eccentricities and angles:
    # Note:
    #   Q is set to zero since it does not
    #   enter disturbing function except in combinations
    #   with z and w.
    Q = T.as_tensor(0)
    z = Q / k - theta

    # See Eq. 20
    Zsq = J * (fTilde * fTilde + gTilde * gTilde) / (f * f + g * g)
    Z = T.sqrt(Zsq)

    # Set W to zero
    Wsinw, Wcosw = 0, 0
    Zsinz, Zcosz = Z * T.sin(z), Z * T.cos(z)

    # Convert Z and W to planet eccentricities
    atan_f_g = T.arctan2(g, f)
    c, s = T.cos(atan_f_g), T.sin(atan_f_g)

    e1cos = c * Zcosz - s * Wcosw
    e1sin = c * Zsinz - s * Wsinw

    e2cos = s * Zcosz + c * Wcosw
    e2sin = s * Zsinz + c * Wsinw

    w1 = T.arctan2(e1sin, e1cos)
    w2 = T.arctan2(e2sin, e2cos)

    e1 = T.sqrt(e1sin * e1sin + e1cos * e1cos)
    e2 = T.sqrt(e2sin * e2sin + e2cos * e2cos)

    # Planets' mean longitudes
    l1 = Q / k - j * kappa
    l2 = Q / k + (k - j) * kappa

    # Planets mean anomalies
    M1 = l1 - w1
    M2 = l2 - w2

    # Convert mean to true anomalies using
    # function 'exoplanet.theano_ops.kepler.KeplerOp'
    ko = KeplerOp()
    sinf1, cosf1 = ko(M1, e1 + T.zeros_like(M1))
    sinf2, cosf2 = ko(M2, e2 + T.zeros_like(M2))

    # Vector of distrubing function values with same dimension as kappa vector
    DFfull = calc_DisturbingFunction_with_sinf_cosf(alpha, e1, e2, w1, w2,
                                                    sinf1, cosf1, sinf2, cosf2)

    # Average distrubing function by weighting values with user-specified
    # quadrature weights.
    DFav = DFfull.dot(quad_weights)

    # Hamiltonian
    Hkep = -0.5 * A / k / k * (J - J_star) * (J - J_star)
    Hres = -2 * eps * DFav
    # ******************IMPORTANT NOTE*************************
    # I have *NOT* subtraced off the secular component of
    # the disturbing function. This means that the Hamiltonian
    # differs slightly from the one defined in the paper.
    # This is generally of little consequence to the resonant
    # dynamics but should be borne in mind when exploring
    # secular dynamics.
    # *********************************************************
    H = Hkep + Hres

    # Gradient and hessian of Hamiltonian w.r.t. phase space variables
    gradHtot = T.grad(H, wrt=dyvars)
    hessHtot = theano.gradient.hessian(H, wrt=dyvars)

    # Flow vector and Jacobian for equations of motion
    OmegaTens = T.as_tensor(getOmegaMatrix(2))
    H_flow_vec = OmegaTens.dot(gradHtot)
    H_flow_jac = OmegaTens.dot(hessHtot)

    #####################################################
    # Set parameters for compiling functions with Theano
    #####################################################

    # Get numerical quadrature nodes and weights
    nodes, weights = np.polynomial.legendre.leggauss(N_QUAD_PTS)

    # Rescale for integration interval from [-1,1] to [-pi,pi]
    nodes = nodes * np.pi
    weights = weights * 0.5

    # 'ins' will set the inputs of Theano functions compiled below
    extra_ins = [m1, m2, j, k, f, g]
    ins = [dyvars] + extra_ins

    # 'givens' will fix some parameters of Theano functions compiled below
    givens = [(kappa, nodes), (quad_weights, weights)]

    ##########################
    # Compile Theano functions
    ##########################

    if not DEBUG:
        # Note that compiling can take a while
        #  so I've put a debugging switch here
        #  to skip evaluating these functions when
        #  desired.
        H_fn = theano.function(inputs=ins, outputs=H, givens=givens)

        H_flow_vec_fn = theano.function(inputs=ins,
                                        outputs=H_flow_vec,
                                        givens=givens)

        H_flow_jac_fn = theano.function(inputs=ins,
                                        outputs=H_flow_jac,
                                        givens=givens)
    else:
        H_fn, H_flow_vec_fn, H_flow_jac_fn = [lambda x: x for _ in range(3)]

    # Some convenience functions...
    Zsq_to_J_Eq20 = (f * f + g * g) / (fTilde * fTilde + gTilde * gTilde)
    dJ_to_Delta_Eq21 = 1.5 * (mu1 + mu2) * (j * mu1 * T.sqrt(alpha) +
                                            (j - k) * mu2) / (
                                                k * T.sqrt(alpha) * mu1 * mu2)
    ecc_vars_fn = theano.function(inputs=ins,
                                  outputs=[e1, w1, e2, w2],
                                  on_unused_input='ignore')
    Zsq_to_J_Eq20_fn = theano.function(inputs=extra_ins,
                                       outputs=Zsq_to_J_Eq20,
                                       on_unused_input='ignore')
    dJ_to_Delta_Eq21_fn = theano.function(inputs=extra_ins,
                                          outputs=dJ_to_Delta_Eq21,
                                          on_unused_input='ignore')
    return (H_fn, H_flow_vec_fn, H_flow_jac_fn, Zsq_to_J_Eq20_fn,
            dJ_to_Delta_Eq21_fn, ecc_vars_fn)
コード例 #7
0
def get_compiled_theano_functions(N_QUAD_PTS):
        # Planet masses: m1,m2
        m1,m2 = T.dscalars(2)
        mstar = 1
        mu1  = m1 * mstar / (mstar  + m1) 
        mu2  = m2 * mstar / (mstar  + m2) 
        Mstar1 = mstar + m1
        Mstar2 = mstar + m2
        beta1 = mu1 * T.sqrt(Mstar1/mstar) / (mu1 + mu2)
        beta2 = mu2 * T.sqrt(Mstar2/mstar) / (mu1 + mu2)
        j,k = T.lscalars('jk')
        s = (j-k) / k
        
        # Angle variable for averaging over
        psi = T.dvector()

        # Dynamical variables:
        Ndof = 2
        Nconst = 1
        dyvars = T.vector()
        y1, y2, x1, x2, amd = [dyvars[i] for i in range(2*Ndof + Nconst)]

        # Quadrature weights
        quad_weights = T.dvector('w')
        
        # Set lambda2=0
        l2 = T.constant(0.)
        l1 = -1 * k * psi 
        theta_res = (1+s) * l2 - s * l1
        cos_theta_res = T.cos(theta_res)
        sin_theta_res = T.sin(theta_res)
        
        kappa1 = x1 * cos_theta_res + y1 * sin_theta_res
        eta1   = y1 * cos_theta_res - x1 * sin_theta_res
        kappa2 = x2 * cos_theta_res + y2 * sin_theta_res
        eta2   = y2 * cos_theta_res - x2 * sin_theta_res

        Gamma1 = (x1 * x1 + y1 * y1) / 2
        Gamma2 = (x2 * x2 + y2 * y2) / 2
        
        # Resonant semi-major axis ratio
        alpha_res = ((j-k)/j)**(2/3) * (Mstar1 / Mstar2)**(1/3)
        #P0 =  k * ( beta2 - beta1 * T.sqrt(alpha_res) ) / 2
        #P = P0 - k * (s+1/2) * amd
        #Ltot = beta1 * T.sqrt(alpha_res) + beta2 - amd
        a20 = 1
        a10 = alpha_res * a20
        Ltot = beta1 * T.sqrt(a10) + beta2 * np.sqrt(a20)
        L1byL2res = beta1 * T.sqrt(a10) / beta2 * np.sqrt(a20)
        L2res = (amd + Ltot) / (1 + L1byL2res)
        P = 0.5 * L2res * (1 - L1byL2res) - (s+1/2) * amd 

        L1 = Ltot/2 - P / k - s * (Gamma1 + Gamma2)
        L2 = Ltot/2 + P / k + (1 + s) * (Gamma1 + Gamma2)

        Xre1 = kappa1 / T.sqrt(L1)
        Xim1 = -eta1 / T.sqrt(L1)

        Xre2 = kappa2 / T.sqrt(L2)
        Xim2 = -eta2 / T.sqrt(L2)
        
        absX1_sq = 2 * Gamma1 / L1
        absX2_sq = 2 * Gamma2 / L2
        X_to_z1 = T.sqrt(1 - absX1_sq / 4 )
        X_to_z2 = T.sqrt(1 - absX2_sq / 4 )

        a1 = (L1 / beta1 )**2 
        k1 = Xre1 * X_to_z1
        h1 = Xim1 * X_to_z1
        e1 = T.sqrt( absX1_sq ) * X_to_z1
        
        a2 = (L2 / beta2 )**2 
        k2 = Xre2 * X_to_z2
        h2 = Xim2 * X_to_z2
        e2 = T.sqrt( absX2_sq ) * X_to_z2
        
        beta1p = T.sqrt(Mstar1) * beta1
        beta2p = T.sqrt(Mstar2) * beta2
        Hkep = -0.5 * beta1p / a1 - 0.5 * beta2p / a2
        
        Hdir,Hind = calc_Hint_components_planar(
                a1,a2,l1,l2,h1,k1,h2,k2,Mstar1/mstar,Mstar2/mstar
        )
        eps = m1*m2/ (mu1 + mu2) / T.sqrt(mstar)
        Hpert = (Hdir + Hind/mstar)
        Hpert_av = Hpert.dot(quad_weights)
        Htot = Hkep + eps * Hpert_av

        ######################
        # Dissipative dynamics
        ######################
        tau_alpha_0, K1, K2, p = T.dscalars(4)
        y1dot_dis,y2dot_dis,x1dot_dis,x2dot_dis,amddot_dis = T.dscalars(5)
        tau_m_inv = 1/tau_alpha_0
        # Define timescales
        tau_e1 = tau_alpha_0 / K1
        tau_e2 = tau_alpha_0 / K2
        tau_a1_0_inv = -beta2p * alpha_res * tau_m_inv / (beta1p + alpha_res * beta2p)
        tau_a2_0_inv = beta1p * tau_m_inv / (beta1p + alpha_res * beta2p)
        tau_a1 = 1 / (tau_a1_0_inv + 2 * p * e1*e1 / tau_e1 )
        tau_a2 = 1 / (tau_a2_0_inv + 2 * p * e2*e2 / tau_e2 )
        
        tau_L1 = 2 * tau_a1
        tau_L2 = 2 * tau_a2
        tau_Gamma1_inv = 1/tau_L1 + (Gamma1-2*L1) / (Gamma1-L1) / tau_e1 
        tau_Gamma2_inv = 1/tau_L2 + (Gamma2-2*L2) / (Gamma2-L2) / tau_e2 
        # Time derivatives of canonical variables
        x1dot_dis = -0.5 * x1 * tau_Gamma1_inv
        x2dot_dis = -0.5 * x2 * tau_Gamma2_inv
        y1dot_dis = -0.5 * y1 * tau_Gamma1_inv
        y2dot_dis = -0.5 * y2 * tau_Gamma2_inv
        Pdot_dis = -0.5 * k * ( L2 / tau_L2 - L1 / tau_L1) + k * (s + 1/2) * (Gamma1 * tau_Gamma1_inv + Gamma2 * tau_Gamma2_inv)
        amddot_dis = Pdot_dis / T.grad(P,amd)
        
        #####################################################
        # Set parameters for compiling functions with Theano
        #####################################################
        
        # Get numerical quadrature nodes and weight
        nodes,weights = np.polynomial.legendre.leggauss(N_QUAD_PTS)
        
        # Rescale for integration interval from [-1,1] to [-pi,pi]
        nodes = nodes * np.pi
        weights = weights * 0.5
        
        # 'givens' will fix some parameters of Theano functions compiled below
        givens = [(psi,nodes),(quad_weights,weights)]

        # 'ins' will set the inputs of Theano functions compiled below
        #   Note: 'extra_ins' will be passed as values of object attributes
        #   of the 'ResonanceEquations' class defined below
        extra_ins = [m1,m2,j,k,tau_alpha_0,K1,K2,p]
        ins = [dyvars] + extra_ins
        
        # Define flows and jacobians.

        #  Conservative flow
        gradHtot = T.grad(Htot,wrt=dyvars)
        gradHpert = T.grad(Hpert_av,wrt=dyvars)
        gradHkep = T.grad(Hkep,wrt=dyvars)

        hessHtot = theano.gradient.hessian(Htot,wrt=dyvars)
        hessHpert = theano.gradient.hessian(Hpert_av,wrt=dyvars)
        hessHkep = theano.gradient.hessian(Hkep,wrt=dyvars)

        Jtens = T.as_tensor(np.pad(getOmegaMatrix(Ndof),(0,Nconst),'constant'))
        H_flow_vec = Jtens.dot(gradHtot)
        Hpert_flow_vec = Jtens.dot(gradHpert)
        Hkep_flow_vec = Jtens.dot(gradHkep)

        H_flow_jac = Jtens.dot(hessHtot)
        Hpert_flow_jac = Jtens.dot(hessHpert)
        Hkep_flow_jac = Jtens.dot(hessHkep)
        
        # Dissipative flow
        dis_flow_vec = T.stack(y1dot_dis,y2dot_dis,x1dot_dis,x2dot_dis,amddot_dis)
        dis_flow_jac = theano.gradient.jacobian(dis_flow_vec,dyvars)

        # Extras
        sigma1 = T.arctan2(y1,x1)
        sigma2 = T.arctan2(y2,x2)
        orbels = [a1,e1,k*sigma1,a2,e2,k*sigma2]
        dis_timescales = [1/tau_a1_0_inv,1/tau_a2_0_inv,tau_e1,tau_e2]

        orbels_dict = dict(zip(
                ['a1','e1','theta1','a2','e2','theta2'],
                orbels
            )
        )

        actions = [L1,L2,Gamma1,Gamma2]
        actions_dict = dict(
            zip(
                ['L1','L2','Gamma1','Gamma2'],
                actions
                )
        )
        
        timescales_dict = dict(zip(
            ['tau_m1','tau_m2','tau_e1','tau_e2'],
            dis_timescales
            )
        )
        ##########################
        # Compile Theano functions
        ##########################
        func_dict={
         # Hamiltonians
         'H':Htot,
         'Hpert':Hpert_av,
         'Hkep':Hkep,
         # Hamiltonian flows
         'H_flow':H_flow_vec,
         'Hpert_flow':Hpert_flow_vec,
         'Hkep_flow':Hkep_flow_vec,
         # Hamiltonian flow Jacobians
         'H_flow_jac':H_flow_jac,
         'Hpert_flow_jac':Hpert_flow_jac,
         'Hkep_flow_jac':Hkep_flow_jac,
         # Dissipative flow and Jacobian
         'dissipative_flow':dis_flow_vec,
         'dissipative_flow_jac':dis_flow_jac,
         # Extras
         'orbital_elements':orbels_dict,
         'actions':actions_dict,
         'timescales':timescales_dict
        }
        compiled_func_dict=dict()
        for key,val in func_dict.items():
            if key is 'timescales':
                inputs = extra_ins
            else:
                inputs = ins 
            cf = theano.function(
                inputs=inputs,
                outputs=val,
                givens=givens,
                on_unused_input='ignore'
            )
            compiled_func_dict[key]=cf
        return compiled_func_dict
コード例 #8
0
a_val = numpy.array([1, 0, 1, 0])
b_val = numpy.array([0, 1, 0, 1])
x_val = numpy.array([1, 1, 1, 1])
y_val = numpy.array([2, 2, 2, 2])

a, b = T.lvectors('a', 'b')
x, y = T.lvectors('x', 'y')

s1 = T.switch(T.gt(a, b), x, y)
f_s1 = theano.function([a, b, x, y], s1)
result_s1 = f_s1(a_val, b_val, x_val, y_val)
print result_s1  #结果为[1, 2, 1, 2],进行了element-wise操作

s2 = T.switch(a_val > b_val, [2, 2, 2, 2], [3, 3, 3, 3])
f_s2 = theano.function([], s2)
result_s2 = f_s2()
print result_s2

c, d = T.lscalars('c', 'd')
if1 = ifelse.ifelse(T.gt(c, d), x, y)  #相当于T.gt(c, d) ? x : y,不支持element-wise操作
#第一个参数必须返回一个标量
f_if1 = theano.function([c, d, x, y], if1)
result_if1 = f_if1(2, 1, x_val, y_val)
print result_if1

if2 = ifelse.ifelse(1, x_val, y_val)  # 参数为常量时
f_if2 = theano.function([], if2)
result_if2 = f_if2()
print result_if2
コード例 #9
0
ファイル: nn.py プロジェクト: cowpig/replearn
    # i, batch_size = T.lscalars('i', 'batch_size')
    
    # train_step = theano.function([i, batch_size], out_layer.output, 
    #                             givens={x : inputs[i:i+batch_size]})
                                # mode="DebugMode")

    params = hidden1r.params + hidden1b.params + hidden2.params + out_layer.params
    cost = T.sqrt(T.mean(T.sqr(out_layer.output - y)))

    gradients = T.grad(cost, params)
    updates = []
    for param, grad in zip(params, gradients):
        updates.append((param, param - LEARNING_RATE * grad))

    i, batch_size = T.lscalars('i', 'batch_size')
    
    train_step = theano.function([i, batch_size], cost, 
                                updates=updates, 
                                givens={x_m : input_m[i:i+batch_size],
                                        x_r : input_r[i:i+batch_size],
                                        y : labels[i:i+batch_size]})
                                # mode="DebugMode")

    n = 0
    while True:
        n += 1
        cost = epoch(100, n_train, train_step)
        print "=== epoch {} ===".format(n)
        print "costs: {}".format([line[()] for line in cost])
        print "avg: {}".format(np.mean(cost))
コード例 #10
0
 def _index_variables(self, basename='index'):
     return T.lscalars(*['%s_%d' % (basename, i)
                         for i in xrange(self.sequence_length)])
コード例 #11
0
def _get_compiled_theano_functions(N_QUAD_PTS):
    # Planet masses: m1,m2
    m1, m2 = T.dscalars(2)
    mstar = 1
    mu1 = m1 * mstar / (mstar + m1)
    mu2 = m2 * mstar / (mstar + m2)
    eta1 = mstar + m1
    eta2 = mstar + m2
    beta1 = mu1 * T.sqrt(eta1 / mstar) / (mu1 + mu2)
    beta2 = mu2 * T.sqrt(eta2 / mstar) / (mu1 + mu2)
    j, k = T.lscalars('jk')
    s = (j - k) / k

    # Angle variable for averaging over
    psi = T.dvector('psi')

    # Quadrature weights
    quad_weights = T.dvector('w')

    # Dynamical variables:
    Ndof = 3
    Nconst = 1
    dyvars = T.vector()
    s1, s2, phi, I1, I2, Phi, dRtilde = [
        dyvars[i] for i in range(2 * Ndof + Nconst)
    ]

    a20 = T.constant(1.)
    a10 = ((j - k) / j)**(2 / 3) * (eta1 / eta2)**(1 / 3) * a20
    L10 = beta1 * T.sqrt(a10)
    L20 = beta2 * T.sqrt(a20)
    Psi = s * L20 + (1 + s) * L10
    Rtilde = dRtilde - L10 - L20
    ####
    # angles
    ####
    rtilde = T.constant(0.)
    Omega = -1 * rtilde
    l1 = phi + k * (1 + s) * psi + Omega
    l2 = phi + k * s * psi + Omega
    gamma1 = s1 - phi - Omega
    gamma2 = s2 - phi - Omega
    q1 = 0.5 * np.pi - Omega
    q2 = -0.5 * np.pi - Omega

    pomega1 = -1 * gamma1
    pomega2 = -1 * gamma2
    Omega1 = -1 * q1
    Omega2 = -1 * q2
    omega1 = pomega1 - Omega1
    omega2 = pomega2 - Omega2

    ###
    # actions
    ###
    Gamma1 = I1
    Gamma2 = I2
    L1 = Psi / k - s * (I1 + I2) - s * Phi
    L2 = -1 * Psi / k + (1 + s) * (I1 + I2) + (1 + s) * Phi
    Cz = -1 * Rtilde

    R = L1 + L2 - Gamma1 - Gamma2 - Cz
    G1 = L1 - Gamma1
    G2 = L2 - Gamma2

    r2_by_r1 = (L2 - L1 - Gamma2 + Gamma1) / (L1 + L2 - Gamma1 - Gamma2 - R)
    rho1 = 0.5 * R * (1 + r2_by_r1)
    rho2 = 0.5 * R * (1 - r2_by_r1)

    a1 = (L1 / beta1)**2
    e1 = T.sqrt(1 - (1 - (Gamma1 / L1))**2)

    a2 = (L2 / beta2)**2
    e2 = T.sqrt(1 - (1 - (Gamma2 / L2))**2)

    cos_inc1 = 1 - rho1 / G1
    cos_inc2 = 1 - rho2 / G2
    inc1 = T.arccos(cos_inc1)
    inc2 = T.arccos(cos_inc2)

    Hkep = -0.5 * T.sqrt(eta1) * beta1 / a1 - 0.5 * T.sqrt(eta2) * beta2 / a2

    ko = KeplerOp()
    M1 = l1 - pomega1
    M2 = l2 - pomega2
    sinf1, cosf1 = ko(M1, e1 + T.zeros_like(M1))
    sinf2, cosf2 = ko(M2, e2 + T.zeros_like(M2))
    #
    n1 = T.sqrt(eta1 / mstar) * a1**(-3 / 2)
    n2 = T.sqrt(eta2 / mstar) * a2**(-3 / 2)
    Hint_dir, Hint_ind, r1, r2, v1, v2 = calc_Hint_components_sinf_cosf(
        a1, a2, e1, e2, inc1, inc2, omega1, omega2, Omega1, Omega2, n1, n2,
        sinf1, cosf1, sinf2, cosf2)
    eps = m1 * m2 / (mu1 + mu2) / T.sqrt(mstar)
    Hpert = (Hint_dir + Hint_ind / mstar)
    Hpert_av = Hpert.dot(quad_weights)
    Htot = Hkep + eps * Hpert_av

    #####################################################
    # Set parameters for compiling functions with Theano
    #####################################################

    # Get numerical quadrature nodes and weights
    nodes, weights = np.polynomial.legendre.leggauss(N_QUAD_PTS)

    # Rescale for integration interval from [-1,1] to [-pi,pi]
    nodes = nodes * np.pi
    weights = weights * 0.5

    # 'givens' will fix some parameters of Theano functions compiled below
    givens = [(psi, nodes), (quad_weights, weights)]

    # 'ins' will set the inputs of Theano functions compiled below
    #   Note: 'extra_ins' will be passed as values of object attributes
    #   of the 'ResonanceEquations' class 'defined below
    extra_ins = [m1, m2, j, k]
    ins = [dyvars] + extra_ins
    orbels = [a1, e1, inc1, k * s1, a2, e2, inc2, k * s2, phi, Omega]
    orbels_dict = dict(
        zip([
            'a1', 'e1', 'inc1', 'theta1', 'a2', 'e2', 'inc2', 'theta2', 'phi'
        ], orbels))
    actions = [L1, L2, Gamma1, Gamma2, rho1, rho2]
    actions_dict = dict(
        zip(['L1', 'L2', 'Gamma1', 'Gamma2', 'Q1', 'Q2'], actions))

    #  Conservative flow
    gradHtot = T.grad(Htot, wrt=dyvars)
    hessHtot = theano.gradient.hessian(Htot, wrt=dyvars)
    Jtens = T.as_tensor(
        np.pad(_get_Omega_matrix(Ndof), (0, Nconst), 'constant'))
    H_flow_vec = Jtens.dot(gradHtot)
    H_flow_jac = Jtens.dot(hessHtot)

    ##########################
    # Compile Theano functions
    ##########################
    orbels_fn = theano.function(inputs=ins,
                                outputs=orbels_dict,
                                givens=givens,
                                on_unused_input='ignore')
    actions_fn = theano.function(inputs=ins,
                                 outputs=actions_dict,
                                 givens=givens,
                                 on_unused_input='ignore')
    Rtilde_fn = theano.function(inputs=ins,
                                outputs=Rtilde,
                                givens=givens,
                                on_unused_input='ignore')

    Htot_fn = theano.function(inputs=ins,
                              outputs=Htot,
                              givens=givens,
                              on_unused_input='ignore')

    Hpert_fn = theano.function(inputs=ins,
                               outputs=Hpert_av,
                               givens=givens,
                               on_unused_input='ignore')

    Hpert_components_fn = theano.function(
        inputs=ins,
        outputs=[Hint_dir.dot(quad_weights),
                 Hint_ind.dot(quad_weights)],
        givens=givens,
        on_unused_input='ignore')

    H_flow_vec_fn = theano.function(inputs=ins,
                                    outputs=H_flow_vec,
                                    givens=givens,
                                    on_unused_input='ignore')

    H_flow_jac_fn = theano.function(inputs=ins,
                                    outputs=H_flow_jac,
                                    givens=givens,
                                    on_unused_input='ignore')

    return dict({
        'orbital_elements': orbels_fn,
        'actions': actions_fn,
        'Rtilde': Rtilde_fn,
        'Hamiltonian': Htot_fn,
        'Hpert': Hpert_fn,
        'Hpert_components': Hpert_components_fn,
        'Hamiltonian_flow': H_flow_vec_fn,
        'Hamiltonian_flow_jacobian': H_flow_jac_fn
    })
def _get_compiled_theano_functions():
    # Planet masses: m1,m2
    m1, m2 = T.dscalars(2)
    mstar = 1
    mu1 = m1 * mstar / (mstar + m1)
    mu2 = m2 * mstar / (mstar + m2)
    eta1 = mstar + m1
    eta2 = mstar + m2
    beta1 = mu1 * T.sqrt(eta1 / mstar) / (mu1 + mu2)
    beta2 = mu2 * T.sqrt(eta2 / mstar) / (mu1 + mu2)
    j, k = T.lscalars('jk')
    s = (j - k) / k

    # Dynamical variables:
    dyvars = T.vector()
    s1, s2, psi, phi, Omega, I1, I2, Psi, Phi, Rtilde = [
        dyvars[i] for i in range(10)
    ]
    l1 = phi - 0.5 * k * psi
    l2 = phi + 0.5 * k * psi
    gamma1 = s1 - (1 + s) * l2 + s * l1
    gamma2 = s2 - (1 + s) * l2 + s * l1
    Gamma1 = I1
    Gamma2 = I2
    L1 = Phi / 2 - Psi / k - s * (I1 + I2)
    L2 = Phi / 2 + Psi / k + (s + 1) * (I1 + I2)
    Cz = -1 * Rtilde

    R = L1 + L2 - Gamma1 - Gamma2 - Cz
    G1 = L1 - Gamma1
    G2 = L2 - Gamma2

    r2_by_r1 = (L2 - L1 - Gamma2 + Gamma1) / (L1 + L2 - Gamma1 - Gamma2 - R)
    rho1 = 0.5 * R * (1 + r2_by_r1)
    rho2 = 0.5 * R * (1 - r2_by_r1)

    a1 = (L1 / beta1)**2
    e1 = T.sqrt(1 - (1 - (Gamma1 / L1))**2)

    a2 = (L2 / beta2)**2
    e2 = T.sqrt(1 - (1 - (Gamma2 / L2))**2)

    cos_inc1 = 1 - rho1 / G1
    cos_inc2 = 1 - rho2 / G2
    inc1 = T.arccos(cos_inc1)
    inc2 = T.arccos(cos_inc2)

    l1_r = l1 - Omega
    l2_r = l2 - Omega

    Omega1_r = T.constant(np.pi / 2) - Omega
    Omega2_r = Omega1_r - T.constant(np.pi)

    pomega1 = -1 * gamma1
    pomega2 = -1 * gamma2

    pomega1_r = pomega1 - Omega
    pomega2_r = pomega2 - Omega

    omega1 = pomega1_r - Omega1_r
    omega2 = pomega2_r - Omega2_r

    Hkep = -0.5 * T.sqrt(eta1) * beta1 / a1 - 0.5 * T.sqrt(eta2) * beta2 / a2

    ko = KeplerOp()
    M1 = l1_r - pomega1_r
    M2 = l2_r - pomega2_r
    sinf1, cosf1 = ko(M1, e1 + T.zeros_like(M1))
    sinf2, cosf2 = ko(M2, e2 + T.zeros_like(M2))
    #
    n1 = T.sqrt(eta1 / mstar) * a1**(-3 / 2)
    n2 = T.sqrt(eta2 / mstar) * a2**(-3 / 2)
    Hint_dir, Hint_ind, r1, r2, v1, v2 = calc_Hint_components_sinf_cosf(
        a1, a2, e1, e2, inc1, inc2, omega1, omega2, Omega1_r, Omega2_r, n1, n2,
        sinf1, cosf1, sinf2, cosf2)
    eps = m1 * m2 / (mu1 + mu2) / T.sqrt(mstar)
    Hpert = (Hint_dir + Hint_ind / mstar)
    Htot = Hkep + eps * Hpert

    #####################################################
    # Set parameters for compiling functions with Theano
    #####################################################

    # 'ins' will set the inputs of Theano functions compiled below
    #   Note: 'extra_ins' will be passed as values of object attributes
    #   of the 'ResonanceEquations' class 'defined below
    extra_ins = [m1, m2, j, k]
    givens = []
    ins = [dyvars] + extra_ins
    orbels = [
        a1, e1, inc1, l1_r, pomega1_r, Omega1_r, a2, e2, inc2, l2_r, pomega2_r,
        Omega2_r
    ]
    #  Conservative flow
    gradHtot = T.grad(Htot, wrt=dyvars)
    hessHtot = theano.gradient.hessian(Htot, wrt=dyvars)
    Jtens = T.as_tensor(_get_Omega_matrix(5))
    H_flow_vec = Jtens.dot(gradHtot)
    H_flow_jac = Jtens.dot(hessHtot)

    ##########################
    # Compile Theano functions
    ##########################
    orbels_fn = theano.function(inputs=ins,
                                outputs=orbels,
                                givens=givens,
                                on_unused_input='ignore')

    rv1_fn = theano.function(inputs=ins,
                             outputs=r1 + v1,
                             givens=givens,
                             on_unused_input='ignore')
    rv2_fn = theano.function(inputs=ins,
                             outputs=r2 + v2,
                             givens=givens,
                             on_unused_input='ignore')

    Htot_fn = theano.function(inputs=ins,
                              outputs=Htot,
                              givens=givens,
                              on_unused_input='ignore')

    Hpert_fn = theano.function(inputs=ins,
                               outputs=Hpert,
                               givens=givens,
                               on_unused_input='ignore')

    Hpert_components_fn = theano.function(inputs=ins,
                                          outputs=[Hint_dir, Hint_ind],
                                          givens=givens,
                                          on_unused_input='ignore')

    H_flow_vec_fn = theano.function(inputs=ins,
                                    outputs=H_flow_vec,
                                    givens=givens,
                                    on_unused_input='ignore')

    H_flow_jac_fn = theano.function(inputs=ins,
                                    outputs=H_flow_jac,
                                    givens=givens,
                                    on_unused_input='ignore')
    return dict({
        'orbital_elements': orbels_fn,
        'Hamiltonian': Htot_fn,
        'Hpert': Hpert_fn,
        'Hpert_components': Hpert_components_fn,
        'Hamiltonian_flow': H_flow_vec_fn,
        'Hamiltonian_flow_jacobian': H_flow_jac_fn,
        'positions_and_velocities1': rv1_fn,
        'positions_and_velocities2': rv2_fn
    })
コード例 #13
0
def _get_compiled_theano_functions(N_QUAD_PTS):
    # resonance j and k
    j, k = T.lscalars('jk')
    s = (j - k) / k
    # Planet masses: m1,m2
    m1, m2 = T.dscalars(2)
    mstar = 1
    mu1 = m1 * mstar / (mstar + m1)
    mu2 = m2 * mstar / (mstar + m2)
    eta1 = mstar + m1
    eta2 = mstar + m2
    beta1 = mu1 * T.sqrt(eta1 / mstar) / (mu1 + mu2)
    beta2 = mu2 * T.sqrt(eta2 / mstar) / (mu1 + mu2)

    # Angle variable for averaging over
    psi = T.dvector('psi')

    # Dynamical variables:
    dyvars = T.vector()
    y1, y2, phi1, x1, x2, J1, amd = [dyvars[i] for i in range(7)]

    I1 = (y1 * y1 + x1 * x1) / 2
    I2 = (y2 * y2 + x2 * x2) / 2
    sigma1 = T.arctan2(y1, x1)
    sigma2 = T.arctan2(y2, x2)

    # Quadrature weights
    quad_weights = T.dvector('w')

    # Set l=0
    l = T.constant(0.)
    l1 = l - k * psi / 2
    l2 = l + k * psi / 2
    pomega1 = (1 + s) * l2 - s * l1 - sigma1
    pomega2 = (1 + s) * l2 - s * l1 - sigma2

    Gamma1 = I1
    Gamma2 = I2

    # Resonant semi-major axis ratio
    a20 = T.constant(1.0)
    a10 = (eta1 / eta2)**(1 / 3) * ((j - k) / j)**(2 / 3) * a20
    Lambda20 = beta2 * T.sqrt(a20)
    Lambda10 = beta1 * T.sqrt(a10)
    Ltot = Lambda10 + Lambda20

    Psi0 = 0.5 * k * (Lambda20 - Lambda10)
    Psi = Psi0 - k * (s + 1 / 2) * amd

    L1 = Ltot / 2 + J1 / 2 - Psi / k - s * (I1 + I2)
    L2 = Ltot / 2 + J1 / 2 + Psi / k + (1 + s) * (I1 + I2)

    # Choose z axis along direction of total angular momentum
    r2_by_r1 = (L2 - L1 - Gamma2 + Gamma1) / (L1 + L2 - Gamma1 - Gamma2 - J1)
    rho1 = 0.5 * J1 * (1 + r2_by_r1)
    rho2 = 0.5 * J1 * (1 - r2_by_r1)

    G1 = L1 - Gamma1
    G2 = L2 - Gamma1

    a1 = (L1 / beta1)**2
    e1 = T.sqrt(1 - (1 - (Gamma1 / L1))**2)

    a2 = (L2 / beta2)**2
    e2 = T.sqrt(1 - (1 - (Gamma2 / L2))**2)

    cos_inc1 = 1 - rho1 / G1
    cos_inc2 = 1 - rho2 / G2
    inc1 = T.arccos(cos_inc1)
    inc2 = T.arccos(cos_inc2)
    Omega1 = l - np.pi / 2 - phi1
    Omega2 = l + np.pi / 2 - phi1
    omega1 = pomega1 - Omega1
    omega2 = pomega2 - Omega2

    Hkep = -0.5 * T.sqrt(eta1) * beta1 / a1 - 0.5 * T.sqrt(eta2) * beta2 / a2

    ko = KeplerOp()
    M1 = l1 - pomega1
    M2 = l2 - pomega2
    sinf1, cosf1 = ko(M1, e1 + T.zeros_like(M1))
    sinf2, cosf2 = ko(M2, e2 + T.zeros_like(M2))
    #
    n1 = T.sqrt(eta1 / mstar) * a1**(-3 / 2)
    n2 = T.sqrt(eta2 / mstar) * a2**(-3 / 2)
    Hint_dir, Hint_ind = calc_Hint_components_sinf_cosf(
        a1, a2, e1, e2, inc1, inc2, omega1, omega2, Omega1, Omega2, n1, n2,
        sinf1, cosf1, sinf2, cosf2)
    eps = m1 * m2 / (mu1 + mu2) / T.sqrt(mstar * a20)
    Hpert = (Hint_dir + Hint_ind / mstar).dot(quad_weights)
    Htot = Hkep + eps * Hpert

    #####################################################
    # Set parameters for compiling functions with Theano
    #####################################################

    # Get numerical quadrature nodes and weights
    nodes, weights = np.polynomial.legendre.leggauss(N_QUAD_PTS)

    # Rescale for integration interval from [-1,1] to [-pi,pi]
    nodes = nodes * np.pi
    weights = weights * 0.5

    # 'givens' will fix some parameters of Theano functions compiled below
    givens = [(psi, nodes), (quad_weights, weights)]

    # 'ins' will set the inputs of Theano functions compiled below
    #   Note: 'extra_ins' will be passed as values of object attributes
    #   of the 'ResonanceEquations' class 'defined below
    extra_ins = [m1, m2, j, k]
    ins = [dyvars] + extra_ins

    orbels = [
        a1, e1, inc1, sigma1 * k, Omega1, a2, e2, inc2, sigma2 * k, Omega2
    ]

    #  Conservative flow
    gradHtot = T.grad(Htot, wrt=dyvars)
    hessHtot = theano.gradient.hessian(Htot, wrt=dyvars)
    Jtens = T.as_tensor(np.pad(_get_Omega_matrix(3), (0, 1), 'constant'))
    H_flow_vec = Jtens.dot(gradHtot)
    H_flow_jac = Jtens.dot(hessHtot)

    ##########################
    # Compile Theano functions
    ##########################
    actions_fn = theano.function(
        inputs=ins,
        outputs={'L1':L1,'L1':L2,'Gamma1':Gamma1,'Gamma2':Gamma2,\
                'Q1':rho1,'Q2':rho2,'Psi':Psi,'Psi0':Psi0},
        givens=givens,
        on_unused_input='ignore'
    )
    orbels_fn = theano.function(inputs=ins,
                                outputs=orbels,
                                givens=givens,
                                on_unused_input='ignore')

    Htot_fn = theano.function(inputs=ins,
                              outputs=Htot,
                              givens=givens,
                              on_unused_input='ignore')

    Hpert_fn = theano.function(inputs=ins,
                               outputs=Hpert,
                               givens=givens,
                               on_unused_input='ignore')

    H_flow_vec_fn = theano.function(inputs=ins,
                                    outputs=H_flow_vec,
                                    givens=givens,
                                    on_unused_input='ignore')

    H_flow_jac_fn = theano.function(inputs=ins,
                                    outputs=H_flow_jac,
                                    givens=givens,
                                    on_unused_input='ignore')
    return dict({
        'orbital_elements': orbels_fn,
        'actions': actions_fn,
        'Hamiltonian': Htot_fn,
        'Hpert': Hpert_fn,
        'Hamiltonian_flow': H_flow_vec_fn,
        'Hamiltonian_flow_jacobian': H_flow_jac_fn
    })