コード例 #1
0
rcot = RCOT2(significance=parameters['cond_ind_test.significance'],
            num_f=parameters['cond_ind_test.num_f'])
pcmci = PCMCI(dataframe,
              cond_ind_test=rcot,
              selected_variables=parameters['selected_variables'],
              var_names=parameters['var_names'],
              verbosity=10)
              
q_matrix = pcmci.get_corrected_pvalues(p_matrix=p_matrix, fdr_method='fdr_bh')
q_matrix_tsbh = pcmci.get_corrected_pvalues(p_matrix=p_matrix, fdr_method='fdr_tsbh')

#%% print results
pcmci._print_significant_links(
        p_matrix = p_matrix, 
        q_matrix = q_matrix,
        val_matrix = val_matrix,
        alpha_level = 0.1)


#%% get selected parents and fit linear model
q_0 = 0.05

parameters['q_0'] = q_0
parameters['q_matrix'] = q_matrix

parent_dict = pcmci._return_significant_parents(q_matrix, val_matrix, q_0)
parameters['parent_dict'] = parent_dict

med = LinearMediation(dataframe=dataframe) #, data_transform=False)
med.fit_model(all_parents=parent_dict['parents'])
コード例 #2
0
        # ======================================================================================================================
        results = pcmci.run_pcmci(
            tau_max=tau_max,
            pc_alpha=pc_alpha,
            tau_min=tau_min,
            max_combinations=1)  #selected_links = dictionary/None
        #results = pcmci.run_pcmci(selected_links =None, tau_max=tau_max, pc_alpha = pc_alpha, tau_min = tau_min,save_iterations=False,  max_conds_dim=None, max_combinations=1, max_conds_py=None, max_conds_px=None) #selected_links = dictionary/None
        #results = pcmci.run_pcmci(selected_links =  dictionary, tau_max=tau_max, pc_alpha = pc_alpha, tau_min = tau_min,save_iterations=False,  max_conds_dim=None, max_combinations=1, max_conds_py=None, max_conds_px=None) #selected_links = dictionary/None

        q_matrix = pcmci.get_corrected_pvalues(p_matrix=results['p_matrix'],
                                               fdr_method='fdr_bh')

        pcmci._print_significant_links(
            p_matrix=results['p_matrix'],
            q_matrix=q_matrix,  #results['p_matrix']
            val_matrix=results['val_matrix'],
            alpha_level=alpha_level)

        sig = pcmci._return_significant_parents(
            pq_matrix=q_matrix,
            val_matrix=results['val_matrix'],
            alpha_level=alpha_level)

        all_parents = sig['parents']
        link_matrix = sig['link_matrix']

        # parents of index of interest:
        # parents_neighbors = all_parents, estimates, iterations
        parents_MT = all_parents[0]
コード例 #3
0
ファイル: circ_caus.py プロジェクト: hert3863/DPHIL
def caus_gpdc(data, var_names):
    import numpy as np
    import matplotlib as mpl
    from matplotlib import pyplot as plt
    import sklearn

    import tigramite
    from tigramite import data_processing as pp
    from tigramite import plotting as tp
    from tigramite.pcmci import PCMCI
    from tigramite.independence_tests import ParCorr, GPDC, CMIknn, CMIsymb
    from tigramite.models import LinearMediation, Prediction

    data_mask_row = np.zeros(len(data))
    for i in range(68904):
        if (i % 72) < 30 or (i % 72) > 47:
            data_mask_row[i] = True
    data_mask = np.zeros(data.shape)

    data_mask[:, 0] = data_mask_row
    data_mask[:, 1] = data_mask_row
    data_mask[:, 2] = data_mask_row
    data_mask[:, 9] = data_mask_row
    data_mask[:, 10] = data_mask_row
    data_mask[:, 11] = data_mask_row

    dataframe = pp.DataFrame(data, mask=data_mask)
    datatime = np.arange(len(data))

    # tp.plot_timeseries(data, datatime, var_names, use_mask=True,
    #                    mask=data_mask, grey_masked_samples='data')

    gpdc = GPDC(significance='analytic',
                gp_params=None,
                use_mask=True,
                mask_type='y')
    gpdc.generate_and_save_nulldists(sample_sizes=range(495, 501),
                                     null_dist_filename='dc_nulldists.npz')
    gpdc.null_dist_filename = 'dc_nulldists.npz'
    pcmci_gpdc = PCMCI(dataframe=dataframe,
                       cond_ind_test=gpdc,
                       var_names=var_names,
                       verbosity=1)

    # correlations = pcmci.get_lagged_dependencies(tau_max=20)
    # lag_func_matrix = tp.plot_lagfuncs(val_matrix=correlations,
    #                                    setup_args={'var_names':var_names,
    #                                    'x_base':5, 'y_base':.5})

    results = pcmci_gpdc.run_pcmci(tau_max=6, tau_min=1, pc_alpha=0.01)

    # print("p-values")
    # print (results['p_matrix'].round(3))
    # print("MCI partial correlations")
    # print (results['val_matrix'].round(2))

    q_matrix = pcmci_gpdc.get_corrected_pvalues(p_matrix=results['p_matrix'],
                                                fdr_method='fdr_bh')
    pcmci_gpdc._print_significant_links(p_matrix=results['p_matrix'],
                                        q_matrix=q_matrix,
                                        val_matrix=results['val_matrix'],
                                        alpha_level=0.01)

    link_matrix = pcmci_gpdc._return_significant_parents(
        pq_matrix=q_matrix, val_matrix=results['val_matrix'],
        alpha_level=0.01)['link_matrix']

    tp.plot_time_series_graph(
        val_matrix=results['val_matrix'],
        link_matrix=link_matrix,
        var_names=var_names,
        link_colorbar_label='MCI',
    )
    return results, link_matrix