コード例 #1
0
def time_lagged_correlation():
    """Runs the time-lagged correlation analysis experiment.

    This function alculates the time-lagged correlation between the variables for lags of up to 48 hours and plots the
    result as a scatterplot matrix.
    """
    var_names = [
        "dayOfYear", "minuteOfYear", "minuteOfDay", "dayOfWeek", "isWeekend",
        "humidity_sensor", "temperature", "precip_intensity", "cloud_cover",
        "p1", "p2", "dew_point", "wind_speed"
    ]
    tau_min = 0
    tau_max = 48
    dataframe, var_list = generate_dataframe(var_names)
    print(f"Variable names: {var_names}")
    ci_test = ParCorr(significance='analytic')
    pcmci = PCMCI(dataframe=dataframe, cond_ind_test=ci_test, verbosity=1)
    correlations = pcmci.get_lagged_dependencies(tau_min=tau_min,
                                                 tau_max=tau_max)
    lag_func_matrix = tp.plot_lagfuncs(
        name="experiments/causal_discovery/results/time_lagged_correlation.png",
        val_matrix=correlations,
        setup_args={
            'var_names': var_names,
            'figsize': (50, 25),
            'label_fontsize': 12,
            'label_space_top': 0.025,
            'label_space_left': 0.05,
            'lag_units': 'hours',
            'x_base': 6,
            'y_base': .5
        })
    print(lag_func_matrix)
コード例 #2
0
ファイル: main.py プロジェクト: yangxhcaf/cybertraining
#var_names = [r'$X^0$', r'$X^1$', r'$X^2$', r'$X^3$']
dataframe = pp.DataFrame(data,
                         datatime=np.arange(len(data)),
                         var_names=headers)

if verbose > 0:
    plot = tp.plot_timeseries(dataframe)[0]
    if display_images:
        plot.show()
    if save_images:
        plot.savefig("timeseries.png")

parcorr = ParCorr(significance='analytic')
pcmci = PCMCI(dataframe=dataframe, cond_ind_test=parcorr, verbosity=1)

correlations = pcmci.get_lagged_dependencies(tau_max=3)
lag_func_matrix = tp.plot_lagfuncs(val_matrix=correlations,
                                   setup_args={
                                       'var_names': headers,
                                       'x_base': 5,
                                       'y_base': .5
                                   })

if verbose > 1:
    if display_images:
        lag_func_matrix.savefig()
    if save_images:
        lag_func_matrix.savefig("lag_func.png")

pcmci.verbosity = 1
results = pcmci.run_pcmci(tau_max=tau_max, pc_alpha=None)
コード例 #3
0
data.shape

# In[5]:

tp.plot_timeseries(dataframe)
plt.show()

# In[6]:

parcorr = ParCorr(significance='analytic')
pcmci = PCMCI(dataframe=dataframe, cond_ind_test=parcorr, verbosity=1)

# In[7]:

correlations = pcmci.get_lagged_dependencies(tau_max=20,
                                             val_only=True)['val_matrix']
lag_func_matrix = tp.plot_lagfuncs(val_matrix=correlations,
                                   setup_args={
                                       'figsize': (6, 6),
                                       'var_names': var_names,
                                       'x_base': 10,
                                       'y_base': .5
                                   })

# In[8]:

pcmci.verbosity = 0
results = pcmci.run_pcmci(tau_max=8, pc_alpha=None)

# In[9]: