def test_converged_zetas(self): """ Testing convergence of zetas. """ friction = 10.0 dt = 0.08 temp = 0.0 num_atoms = self.x0.shape[0] x_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) num_steps = 100 # with a temp of 10.0 should converge really quickly with tf.variable_scope("reference"): ref_intg = integrator.LangevinIntegrator(self.masses, x_ph, [self.ha, self.hb], dt, friction, temp) # ref_intg.vscale = 0.45 -> so we should converge fully to 16 decimals after 47 steps with tf.variable_scope("test"): test_intg = integrator.LangevinIntegrator(self.masses, x_ph, [self.ha, self.hb], dt, friction, temp, buffer_size=50) ref_dx, ref_dxdps = ref_intg.step_op() test_dx, test_dxdps = test_intg.step_op() sess = tf.Session() sess.run(tf.initializers.global_variables()) x_ref = np.copy(self.x0) x_test = np.copy(self.x0) for step in range(num_steps): ref_dx_val, ref_dxdp_val = sess.run([ref_dx, ref_dxdps], feed_dict={x_ph: x_ref}) test_dx_val, test_dxdp_val = sess.run([test_dx, test_dxdps], feed_dict={x_ph: x_test}) np.testing.assert_array_almost_equal(ref_dx_val, test_dx_val, decimal=14) np.testing.assert_array_almost_equal( ref_dxdp_val, test_dxdp_val, decimal=14) # BAD WTF CONVERGENCE x_ref += ref_dx_val x_test += test_dx_val
def test_optimize_single_structure(self): """ Testing optimization of a single structure. """ masses = np.array([8.0, 1.0, 1.0]) x0 = np.array([ [-0.0070, -0.0100, 0.0000], [-1.1426, 0.5814, 0.0000], [0.4728, -0.2997, 0.0000], ], dtype=np.float64) # starting geometry x0.setflags(write=False) x_opt = np.array([ [-0.0070, -0.0100, 0.0000], [-0.1604, 0.4921, 0.0000], [0.5175, 0.0128, 0.0000], ], dtype=np.float64) # idealized geometry x_opt.setflags(write=False) bonds = x_opt - x_opt[0, :] bond_lengths = np.linalg.norm(bonds[1:, :], axis=1) num_atoms = len(masses) starting_bond = 0.8 # Guessestimate starting (true x_opt: 0.52) starting_angle = 2.1 # Guessestimate ending (true x_opt: 1.81) bond_params = [ tf.get_variable("OH_kb", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(100.0)), tf.get_variable( "OH_b0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(starting_bond)), ] hb = bonded_force.HarmonicBondForce( params=bond_params, bond_idxs=np.array([[0, 1], [0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1], [0, 1]], dtype=np.int32)) angle_params = [ tf.get_variable("HOH_ka", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(75.0)), tf.get_variable( "HOH_a0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(starting_angle)), ] ha = bonded_force.HarmonicAngleForce( params=angle_params, angle_idxs=np.array([[1, 0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1]], dtype=np.int32)) friction = 10.0 dt = 0.005 # temp = 50.0 temp = 0.0 x_ph = tf.placeholder(name="input_geom", dtype=tf.float64, shape=(num_atoms, 3)) intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt, friction, temp) dx_op, dxdp_op = intg.step_op() num_steps = 500 # param_optimizer = tf.train.AdamOptimizer(0.02) param_optimizer = tf.train.RMSPropOptimizer(0.01) def loss(pred_x): # Compute pairwise distances def dij(x): v01 = x[0] - x[1] v02 = x[0] - x[2] v12 = x[1] - x[2] return tf.stack([tf.norm(v01), tf.norm(v02), tf.norm(v12)]) return tf.norm(dij(x_opt) - dij(pred_x)) # geometry we arrive at at time t=inf x_final_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) dLdx = tf.gradients(loss(x_final_ph), x_final_ph) grads_and_vars = intg.grads_and_vars(dLdx) train_op = param_optimizer.apply_gradients(grads_and_vars) sess = tf.Session() sess.run(tf.initializers.global_variables()) num_epochs = 100 for e in range(num_epochs): params = sess.run(bond_params + angle_params) print("starting epoch", e, "current params", params) # converged if np.abs(params[1] - 0.52) < 0.05 and np.abs(params[3] - 1.81) < 0.05: return x = np.copy(x0) intg.reset(sess) # clear integration buffers for step in range(num_steps): dx_val, dxdp_val = sess.run([dx_op, dxdp_op], feed_dict={x_ph: x}) x += dx_val sess.run(train_op, feed_dict={x_final_ph: x}) # failed to converge assert 0
def test_optimize_water_frequencies(self): masses = np.array([8.0, 1.0, 1.0]) x_opt = np.array([ [-0.0070, -0.0100, 0.0000], [-0.1604, 0.4921, 0.0000], [0.5175, 0.0128, 0.0000], ], dtype=np.float64) x_opt.setflags(write=False) # idealized geometry bonds = x_opt - x_opt[0, :] bond_lengths = np.linalg.norm(bonds[1:, :], axis=1) num_atoms = len(masses) starting_bond = 1.47 # Guessestimate starting (true x_opt: 0.52) starting_angle = 0.07 # Guessestimate ending (true x_opt: 1.81) bond_params = [ tf.get_variable("OH_kb", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(100.0)), tf.get_variable( "OH_b0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(starting_bond)), ] hb = bonded_force.HarmonicBondForce( params=bond_params, bond_idxs=np.array([[0, 1], [0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1], [0, 1]], dtype=np.int32)) angle_params = [ tf.get_variable("HOH_ka", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(75.0)), tf.get_variable( "HOH_a0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(starting_angle)), ] ha = bonded_force.HarmonicAngleForce( params=angle_params, angle_idxs=np.array([[1, 0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1]], dtype=np.int32)) friction = 10.0 dt = 0.005 temp = 0.0 x_ph = tf.placeholder(name="input_geom", dtype=tf.float64, shape=(num_atoms, 3)) intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt, friction, temp) dx_op, dxdp_op = intg.step_op() num_steps = 500 # param_optimizer = tf.train.AdamOptimizer(0.02) param_optimizer = tf.train.RMSPropOptimizer(0.02) def loss(pred_x): test_eigs = observable.vibrational_eigenvalues( pred_x, masses, [hb, ha]) true_freqs = [ 0, 0, 0, 40.63, 59.383, 66.44, 1799.2, 3809.46, 3943 ] # from http://gaussian.com/vib/ true_eigs = [(x / VIBRATIONAL_CONSTANT)**2 for x in true_freqs] return tf.sqrt(tf.reduce_sum(tf.pow(true_eigs - test_eigs, 2))), test_eigs # geometry we arrive at at time t=inf x_final_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) loss_op, test_eigs_op = loss(x_final_ph) dLdx = tf.gradients(loss_op, x_final_ph) grads_and_vars = intg.grads_and_vars(dLdx[0]) train_op = param_optimizer.apply_gradients(grads_and_vars) sess = tf.Session() sess.run(tf.initializers.global_variables()) num_epochs = 750 for e in range(num_epochs): x = np.copy(x_opt) intg.reset(sess) # clear integration buffers for step in range(num_steps): dx_val, dxdp_val = sess.run([dx_op, dxdp_op], feed_dict={x_ph: x}) x += dx_val _, loss, evs = sess.run([train_op, loss_op, test_eigs_op], feed_dict={x_final_ph: x}) print("starting epoch", e, "loss", loss, "current params", sess.run(bond_params + angle_params), evs) params = sess.run(bond_params + angle_params) np.testing.assert_almost_equal(params[1], 0.52, decimal=2) np.testing.assert_almost_equal(params[3], 1.81, decimal=1)
def test_optimize_ensemble(self): """ Testing that we can optimize ensembles with different integrator and ff settings relative to a canonical one. """ # 1. Generate a water ensemble by doing 5000 steps of MD starting from an idealized geometry. # 2. Reservoir sample along the trajectory. # 3. Generate a loss function used sum of square distances. # 4. Compute parameter derivatives. x_opt = np.array([ [-0.0070, -0.0100, 0.0000], [-0.1604, 0.4921, 0.0000], [0.5175, 0.0128, 0.0000], ], dtype=np.float64) # idealized geometry x_opt.setflags(write=False) masses = np.array([8.0, 1.0, 1.0], dtype=np.float64) num_atoms = len(masses) ideal_bond = 0.52 ideal_angle = 1.81 bond_params = [ tf.get_variable("OH_kb", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(100.0)), tf.get_variable("OH_b0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(ideal_bond)), ] hb = bonded_force.HarmonicBondForce( params=bond_params, bond_idxs=np.array([[0, 1], [0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1], [0, 1]], dtype=np.int32)) angle_params = [ tf.get_variable("HOH_ka", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(75.0)), tf.get_variable("HOH_a0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(ideal_angle)), ] ha = bonded_force.HarmonicAngleForce( params=angle_params, angle_idxs=np.array([[1, 0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1]], dtype=np.int32)) # standard MD used to generate a canonical ensemble friction = 1.0 dt = 0.0025 temp = 300.0 num_steps = 20000 x_ph = tf.placeholder(name="input_geom", dtype=tf.float64, shape=(num_atoms, 3)) intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt, friction, temp) reservoir_size = 200 ref_dx_op, _ = intg.step_op(inference=True) sess = tf.Session() sess.run(tf.initializers.global_variables()) def reference_generator(): x = np.copy( x_opt ) # (ytz): Do not remove this copy else you'll spend hours tracking down bugs. for step in range(num_steps): if step % 100 == 0: print(step) dx_val = sess.run(ref_dx_op, feed_dict={x_ph: x}) x += dx_val # this copy is important here, otherwise we're just adding the same reference # since += modifies the object in_place yield np.copy(x), step # wip: decouple def generate_reference_ensemble(): intg.reset(sess) rs = ReservoirSampler(reference_generator(), reservoir_size) rs.sample_all() ensemble = [] for x, t in rs.R: ensemble.append(x) stacked_ensemble = np.stack(ensemble, axis=0) ensemble_ph = tf.placeholder(shape=(reservoir_size, num_atoms, 3), dtype=np.float64) ref_d2ij_op = observable.sorted_squared_distances(ensemble_ph) return ref_d2ij_op, stacked_ensemble, ensemble_ph a1, inp1, ensemble_ph1 = generate_reference_ensemble() a2, inp2, ensemble_ph2 = generate_reference_ensemble() # compute MSE of two _identical_ simulations except for the RNG loss = tf.reduce_sum(tf.pow(a1 - a2, 2)) / reservoir_size # 0.003 mutual_MSE = sess.run(loss, feed_dict={ ensemble_ph1: inp1, ensemble_ph2: inp2 }) print("Optimal MSE", mutual_MSE) # on average, two identical ensembles should yield the same result assert mutual_MSE < 0.05 # Use completely different integration parameters friction = 10.0 dt = 0.05 temp = 100 num_steps = 500 # we need to make the num_steps variable and only stop once we've converged x_ph = tf.placeholder(name="input_geom", dtype=tf.float64, shape=(num_atoms, 3)) with tf.variable_scope("bad"): bad_intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt, friction, temp, buffer_size=None) bad_dx_op, bad_dxdp_op = bad_intg.step_op() d0_ph = tf.placeholder(shape=tuple(), dtype=tf.float64) d1_ph = tf.placeholder(shape=tuple(), dtype=tf.float64) d2_ph = tf.placeholder(shape=tuple(), dtype=tf.float64) d3_ph = tf.placeholder(shape=tuple(), dtype=tf.float64) grads_and_vars = [] for dp, var in zip([d0_ph, d1_ph, d2_ph, d3_ph], bond_params + angle_params): grads_and_vars.append((dp, var)) # param_optimizer = tf.train.AdamOptimizer(0.02) # param_optimizer = tf.train.AdamOptimizer(0.1) # unstable param_optimizer = tf.train.RMSPropOptimizer(0.1) train_op = param_optimizer.apply_gradients(grads_and_vars) sess.run(tf.initializers.global_variables()) # it turns out the force constants don't really matter a whole lot in this case, but the # ideal lengths/angles do matter. # Use completely different forcefield parameters, changing bond constants and lengths. # See if we can recover the original parameters again. sess.run([ tf.assign(bond_params[0], 60), tf.assign(bond_params[1], 1.3), tf.assign(angle_params[0], 43), tf.assign(angle_params[1], 2.1) ]) print("Starting params", sess.run(bond_params + angle_params)) for epoch in range(10000): def sub_optimal_generator(): x = np.copy(x_opt) for step in range(num_steps): dx_val, dxdp_val = sess.run([bad_dx_op, bad_dxdp_op], feed_dict={x_ph: x}) x += dx_val yield np.copy(x), dxdp_val, step # wip: decouple bad_intg.reset(sess) rs = ReservoirSampler(sub_optimal_generator(), reservoir_size) rs.sample_all() bad_ensemble = [] bad_ensemble_grads = [] for x, dxdp, t in rs.R: bad_ensemble.append(x) bad_ensemble_grads.append(dxdp) stacked_bad_ensemble = np.stack(bad_ensemble, axis=0) stacked_bad_ensemble_grads = np.stack(bad_ensemble_grads, axis=0) # compute ensemble's average angle and bond length bad_ensemble_ph = tf.placeholder(shape=(reservoir_size, num_atoms, 3), dtype=np.float64) ref_d2ij_op = observable.sorted_squared_distances(bad_ensemble_ph) # b1, bnp1, bbad_ensemble_ph1 = generate_sub_optimal_bad_ensemble() loss_op = tf.reduce_sum(tf.pow(a1 - ref_d2ij_op, 2)) / reservoir_size # 0.003 dLdx_op = tf.gradients(loss_op, bad_ensemble_ph) loss, dLdx_val = sess.run([loss_op, dLdx_op], feed_dict={ ensemble_ph1: inp1, bad_ensemble_ph: stacked_bad_ensemble }) # MSE 12.953122852970827 dLdx_dxdp = np.multiply(np.expand_dims(dLdx_val[0], 1), stacked_bad_ensemble_grads) reduced_dLdp = np.sum(dLdx_dxdp, axis=tuple([0, 2, 3])) sess.run(train_op, feed_dict={ d0_ph: reduced_dLdp[0], d1_ph: reduced_dLdp[1], d2_ph: reduced_dLdp[2], d3_ph: reduced_dLdp[3], }) if loss < mutual_MSE * 5: # succesfully converged (should take about 600 epochs) return print("loss", loss, "epoch", epoch, "current params", sess.run(bond_params + angle_params)) assert 0
def test_linear_chain(self): """ Testing minimization of HCN into a linear geometry. """ masses = np.array([6.0, 7.0, 1.0]) x0 = np.array( [ [-0.0055, 0.0000, -0.0349], # C [-1.0973, 0.0000, 0.3198], # N [1.1213, 1.1250, -0.3198] # H ], dtype=np.float64) num_atoms = len(masses) bond_params = [ tf.get_variable("HC_kb", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(100.0)), tf.get_variable("HC_b0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(1.0)), tf.get_variable("CN_kb", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(120.0)), tf.get_variable("CN_b0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(1.2)), ] hb = bonded_force.HarmonicBondForce( params=bond_params, bond_idxs=np.array([[0, 1], [0, 2]], dtype=np.int32), param_idxs=np.array([[2, 3], [0, 1]], dtype=np.int32)) ideal_angle = np.pi angle_params = [ tf.get_variable("HCN_ka", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(75.0)), tf.get_variable("HCN_a0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(ideal_angle)), ] ha = bonded_force.HarmonicAngleForce( params=angle_params, angle_idxs=np.array([[1, 0, 2]], dtype=np.int32), param_idxs=np.array([[0, 1]], dtype=np.int32)) friction = 10.0 dt = 0.05 temp = 0.0 # disables noise x_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt, friction, temp) dx_op, dxdp_op = intg.step_op() num_steps = 400 sess = tf.Session() sess.run(tf.initializers.global_variables()) x = x0 for step in range(num_steps): dx_val, dxdp_val = sess.run([dx_op, dxdp_op], feed_dict={x_ph: x}) x += dx_val # test idealized bond distances bonds = x - x[0, :] bond_lengths = np.linalg.norm(bonds[1:, :], axis=1) np.testing.assert_almost_equal(bond_lengths, np.array([1.2, 1.0]), decimal=4) cj = np.take(x, ha.angle_idxs[:, 0], axis=0) ci = np.take(x, ha.angle_idxs[:, 1], axis=0) ck = np.take(x, ha.angle_idxs[:, 2], axis=0) vij = cj - ci vik = ck - ci top = np.sum(vij * vik, -1) bot = np.linalg.norm(vij, axis=-1) * np.linalg.norm(vik, axis=-1) angles = np.arccos(top / bot) np.testing.assert_almost_equal(angles, np.array([ideal_angle] * 1), decimal=2)
def test_methane(self): """ Testing minimization of CH4 into a tetrahedral geometry. """ masses = np.array([6.0, 1.0, 1.0, 1.0, 1.0]) x0 = np.array([[0.0637, 0.0126, 0.2203], [1.0573, -0.2011, 1.2864], [2.3928, 1.2209, -0.2230], [-0.6891, 1.6983, 0.0780], [-0.6312, -1.6261, -0.2601]], dtype=np.float64) num_atoms = len(masses) bond_params = [ tf.get_variable("HH_kb", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(100.0)), tf.get_variable("HH_b0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(1.0)), ] hb = bonded_force.HarmonicBondForce( params=bond_params, bond_idxs=np.array([[0, 1], [0, 2], [0, 3], [0, 4]], dtype=np.int32), param_idxs=np.array([[0, 1], [0, 1], [0, 1], [0, 1]], dtype=np.int32)) ideal_angle = 1.9111355 angle_params = [ tf.get_variable("HCH_ka", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(75.0)), tf.get_variable("HCH_a0", shape=tuple(), dtype=tf.float64, initializer=tf.constant_initializer(ideal_angle)), ] ha = bonded_force.HarmonicAngleForce( params=angle_params, angle_idxs=np.array([[1, 0, 2], [1, 0, 3], [1, 0, 4], [2, 0, 3], [2, 0, 4], [3, 0, 4]], dtype=np.int32), param_idxs=np.array( [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]], dtype=np.int32)) friction = 10.0 dt = 0.005 temp = 0.0 x_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt, friction, temp) dx_op, dxdp_op = intg.step_op() num_steps = 1000 sess = tf.Session() sess.run(tf.initializers.global_variables()) x = x0 for step in range(num_steps): dx_val, dxdp_val = sess.run([dx_op, dxdp_op], feed_dict={x_ph: x}) x += dx_val # test idealized bond distances bonds = x - x[0, :] bond_lengths = np.linalg.norm(bonds[1:, :], axis=1) np.testing.assert_almost_equal(bond_lengths, np.array([1.0] * 4), decimal=4) cj = np.take(x, ha.angle_idxs[:, 0], axis=0) ci = np.take(x, ha.angle_idxs[:, 1], axis=0) ck = np.take(x, ha.angle_idxs[:, 2], axis=0) vij = cj - ci vik = ck - ci top = np.sum(vij * vik, -1) bot = np.linalg.norm(vij, axis=-1) * np.linalg.norm(vik, axis=-1) angles = np.arccos(top / bot) np.testing.assert_almost_equal(angles, np.array([ideal_angle] * 6), decimal=2)
def test_ten_steps(self): """ Testing against reference implementation. """ friction = 10.0 dt = 0.003 temp = 0.0 num_atoms = len(self.masses) x_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) hb = self.hb ha = self.ha ref_intg = ReferenceLangevinIntegrator(self.masses, dt, friction, temp) num_steps = 10 x = x_ph for step in range(num_steps): all_grads = [] for force in [self.hb, self.ha]: all_grads.append(force.gradients(x)) all_grads = tf.stack(all_grads, axis=0) grads = tf.reduce_sum(all_grads, axis=0) dx = ref_intg.step(grads) x += dx ref_x_final_op = x # verify correctness of jacobians through time ref_dxdp_hb_op = jacobian(x, hb.get_params(), use_pfor=False) ref_dxdp_ha_op = jacobian(x, ha.get_params(), use_pfor=False) test_intg = integrator.LangevinIntegrator(self.masses, x_ph, [hb, ha], dt, friction, temp) dx_op, dxdps_op = test_intg.step_op() # dxdps_op = tf.reduce_sum(dxdps_op, axis=[1,2]) sess = tf.Session() sess.run(tf.initializers.global_variables()) ref_x_final, ref_dxdp_hb, ref_dxdp_ha = sess.run( [ref_x_final_op, ref_dxdp_hb_op, ref_dxdp_ha_op], feed_dict={x_ph: self.x0}) x = np.copy( self.x0 ) # this copy is super important else it just modifies everything in place for step in range(num_steps): dx_val, dxdp_val = sess.run([dx_op, dxdps_op], feed_dict={x_ph: x}) x += dx_val test_dxdp = dxdp_val test_x_final_val = x np.testing.assert_array_almost_equal(ref_x_final, test_x_final_val, decimal=14) np.testing.assert_array_almost_equal(np.concatenate( [ref_dxdp_hb, ref_dxdp_ha]), test_dxdp, decimal=14) # BAD, restore to 13 # test grads_and_vars and computation of higher derivatives x_opt = np.array([ [-0.0070, -0.0100, 0.0000], [-0.1604, 0.4921, 0.0000], [0.5175, 0.0128, 0.0000], ], dtype=np.float64) # idealized geometry def loss(pred_x): # Compute pairwise distances def dij(x): v01 = x[0] - x[1] v02 = x[0] - x[2] v12 = x[1] - x[2] return tf.stack([tf.norm(v01), tf.norm(v02), tf.norm(v12)]) return tf.norm(dij(x_opt) - dij(pred_x)) x_final_ph = tf.placeholder(dtype=tf.float64, shape=(num_atoms, 3)) l0 = loss(ref_x_final_op) l1 = loss(x_final_ph) ref_dLdp_op = tf.gradients( l0, self.hb.params + self.ha.params) # goes through reference integrator test_dLdx_op = tf.gradients(l1, x_final_ph) test_dLdp_op_gvs = test_intg.grads_and_vars( test_dLdx_op[0]) # multiply with dxdp # need to fix this test. ref_dLdp = sess.run(ref_dLdp_op, feed_dict={x_ph: self.x0}) test_dLdp = sess.run([a[0] for a in test_dLdp_op_gvs], feed_dict={x_final_ph: test_x_final_val}) np.testing.assert_array_almost_equal(ref_dLdp, test_dLdp)