#spectral analysis, bandpass filters #test a few filters to find the best import toolbox import numpy as np import pylab #-------------------------------------------------- # useful functions #------------------------------------------------- None if __name__ == "__main__": #initialise dataset print "initialising dataset" workspace, params = toolbox.initialise('stack100.su') params['primary'] = None #basic spectral analysis #~ toolbox.fx(workspace, None, **params) params['highcut'] = 100 params['lowcut'] = 30 toolbox.bandpass(workspace, None, **params) toolbox.display(workspace, None, **params) pylab.show()
#build vels vels = toolbox.build_vels(vels, **params) params['primary'] = None params['highcut'] = 100 params['lowcut'] = 30 params['smute'] = 30 params['vels'] = vels v100 = toolbox.co_nmo(workspace, None, **params) toolbox.agc(v100, None, **params) section100 = toolbox.stack(v100, None, **params) toolbox.bandpass(section100, None, **params) toolbox.display(section100, None, **params) params['vels'] = vels * .9 v90 = toolbox.co_nmo(workspace, None, **params) toolbox.agc(v90, None, **params) section90 = toolbox.stack(v90, None, **params) toolbox.bandpass(section90, None, **params) toolbox.display(section90, None, **params) params['vels'] = vels *1.1 v110 = toolbox.co_nmo(workspace, None, **params) toolbox.agc(v110, None, **params) section110 = toolbox.stack(v110, None, **params) toolbox.bandpass(section110, None, **params)
import toolbox import numpy as np import pylab stack, params = toolbox.initialise("fk_stack.su") stack['fldr'] = 1 params['dx'] = 33.5/2.0 #m params['fkVelocity'] = 6000 params['fkSmooth'] = 20 params['fkFilter'] = toolbox.fk_design(stack, **params) stack = toolbox.fk_filter(stack, None, **params) #bandpass params['lowcut'] = 10.0 params['highcut'] = 100.0 toolbox.bandpass(stack, None, **params) stack.tofile("model_filtered.su") #display #~ params['primary'] = None #~ params['secondary'] = 'cdp' #~ toolbox.display(stack, **params) #~ pylab.show()