Exemplo n.º 1
0
#spectral analysis, bandpass filters
#test a few filters to find the best

import toolbox
import numpy as np
import pylab

#--------------------------------------------------
#       useful functions
#-------------------------------------------------

None

if __name__ == "__main__":
    #initialise dataset
    print "initialising dataset"
    workspace, params = toolbox.initialise('stack100.su')
    params['primary'] = None

    #basic spectral analysis
    #~ toolbox.fx(workspace, None, **params)

    params['highcut'] = 100
    params['lowcut'] = 30

    toolbox.bandpass(workspace, None, **params)
    toolbox.display(workspace, None, **params)

    pylab.show()
Exemplo n.º 2
0
        
        #build vels
        vels = toolbox.build_vels(vels, **params)
        
        params['primary'] = None
        params['highcut'] = 100
        params['lowcut'] = 30
        params['smute'] = 30
        
        
        
        params['vels'] = vels
        v100 = toolbox.co_nmo(workspace, None, **params)
        toolbox.agc(v100, None, **params)
        section100 = toolbox.stack(v100, None, **params)
        toolbox.bandpass(section100, None, **params)
        toolbox.display(section100, None, **params)
        

        params['vels'] = vels * .9
        v90 = toolbox.co_nmo(workspace, None, **params)
        toolbox.agc(v90, None, **params)
        section90 = toolbox.stack(v90, None, **params)
        toolbox.bandpass(section90, None, **params)
        toolbox.display(section90, None, **params)
        
        params['vels'] = vels *1.1
        v110 = toolbox.co_nmo(workspace, None, **params)
        toolbox.agc(v110, None, **params)
        section110 = toolbox.stack(v110, None, **params)
        toolbox.bandpass(section110, None, **params)
Exemplo n.º 3
0
import toolbox
import numpy as np
import pylab


stack,  params = toolbox.initialise("fk_stack.su")

stack['fldr'] = 1
params['dx'] = 33.5/2.0 #m
params['fkVelocity'] = 6000
params['fkSmooth'] = 20
params['fkFilter'] = toolbox.fk_design(stack, **params) 
stack = toolbox.fk_filter(stack, None, **params)


#bandpass
params['lowcut'] = 10.0
params['highcut'] = 100.0
toolbox.bandpass(stack, None, **params)

stack.tofile("model_filtered.su")

#display
#~ params['primary'] = None
#~ params['secondary'] = 'cdp'
#~ toolbox.display(stack, **params)
#~ pylab.show()

Exemplo n.º 4
0
#spectral analysis, bandpass filters
#test a few filters to find the best

import toolbox
import numpy as np
import pylab

#--------------------------------------------------
#       useful functions
#-------------------------------------------------

None

if __name__ == "__main__":
        #initialise dataset
        print "initialising dataset"
        workspace, params = toolbox.initialise('stack100.su')
        params['primary'] = None

        #basic spectral analysis
        #~ toolbox.fx(workspace, None, **params)
        
        params['highcut'] = 100
        params['lowcut'] = 30
        
        toolbox.bandpass(workspace, None, **params)
        toolbox.display(workspace, None, **params)
        
        pylab.show()