def get_label_mask(self, y_true): """获取batch内相同label样本""" label = K.cast(y_true, 'int32') label_2 = K.reshape(label, (1, -1)) mask = K.equal(label_2, label) mask = K.cast(mask, K.floatx()) mask = mask * (1 - K.eye(K.shape(y_true)[0])) # 排除对角线,即 i == j return mask
def compute_loss_of_similarity(self, inputs): y_true = self.get_labels_of_similarity(inputs) # 构建标签 y_pred = K.l2_normalize(inputs, axis=1) # 句向量归一化 similarities = K.dot(y_pred, K.transpose(y_pred)) # 相似度矩阵 similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12 # 排除对角线 similarities = similarities * self.scale # scale loss = K.categorical_crossentropy( y_true, similarities, from_logits=True ) return loss
def compute_loss_of_similarity(self, inputs, mask=None): # _, _, _, y_pred, _ = inputs _, _, _, _, y_pred = inputs # use last layer's logits y_true = self.get_labels_of_similarity(y_pred) # 构建标签 y_pred = K.l2_normalize(y_pred, axis=1) # 句向量归一化 similarities = K.dot(y_pred, K.transpose(y_pred)) # 相似度矩阵 similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12 # 排除对角线 similarities = similarities * 20 # scale loss = K.categorical_crossentropy( y_true, similarities, from_logits=True ) self.add_metric(loss, 'sim_loss') return loss
def compute_loss_of_scl(self, inputs, mask=None): y_pred, y_true = inputs label_mask = self.get_label_mask(y_true) y_pred = K.l2_normalize(y_pred, axis=1) # 特征向量归一化 similarities = K.dot(y_pred, K.transpose(y_pred)) # 相似矩阵 similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12 # 排除对角线,即 i == j similarities = similarities / self.T # Temperature scale similarities = K.exp(similarities) # exp sum_similarities = K.sum(similarities, axis=-1, keepdims=True) # sum i != k scl = similarities / sum_similarities scl = K.log(scl + K.epsilon()) # sum log scl = -K.sum(scl * label_mask, axis=1, keepdims=True) / (K.sum(label_mask, axis=1, keepdims=True) + K.epsilon()) return K.mean(scl)