コード例 #1
0
ファイル: layers.py プロジェクト: wangbq18/toolkit4nlp
 def log_norm_step(self, inputs, states):
     """递归求解归一化因子"""
     inputs, mask = inputs[:, :-1], inputs[:, -1:]
     states = K.expand_dims(states[0], 2)  # batch_size,output_dim, 1
     trans = K.expand_dims(self.trans, 0)  # 1, output_dim, output_dim
     outputs = K.logsumexp(states + trans, 1)
     outputs += inputs
     outputs = mask * outputs + (1 - mask) * states[:, :, 0]
     return outputs, [outputs]
コード例 #2
0
ファイル: layers.py プロジェクト: wangbq18/toolkit4nlp
 def dense_loss(self, y_true, y_pred):
     """y_true需要是one hot形式
     """
     # 导出mask并转换数据类型
     mask = K.all(K.greater(y_pred, -1e6), axis=2, keepdims=True)
     mask = K.cast(mask, K.floatx())
     # 计算目标分数
     y_true, y_pred = y_true * mask, y_pred * mask
     target_score = self.path_score(y_pred, y_true)
     # 递归计算log Z
     init_states = [y_pred[:, 0]]
     y_pred = K.concatenate([y_pred, mask], axis=2)
     input_length = K.int_shape(y_pred[:, 1:])[1]
     log_norm, _, _ = K.rnn(self.log_norm_step,
                            y_pred[:, 1:],
                            init_states,
                            input_length=input_length)  # 最后一步的log Z向量
     log_norm = K.logsumexp(log_norm, 1)  # logsumexp得标量
     # 计算损失 -log p
     return log_norm - target_score