コード例 #1
0
ファイル: compute_models.py プロジェクト: mjhaskell/EE_674_py
def dq_dtheta(euler):
    h = 0.005
    Jacobian = np.zeros((4, 3))
    for i in range(3):
        e_p = np.copy(euler)
        e_p[i][0] += h
        e_m = np.copy(euler)
        e_m[i][0] -= h

        f_p = Euler2Quaternion(e_p.item(0), e_p.item(1), e_p.item(2))
        f_m = Euler2Quaternion(e_m.item(0), e_m.item(1), e_m.item(2))

        Jac_col_i = (f_p - f_m) / (2 * h)
        Jacobian[:, i] = Jac_col_i[:, 0]

    return Jacobian
コード例 #2
0
    def convert(self):
        quat = Euler2Quaternion(self.phi, self.theta, self.psi)
        e0 = quat.item(0)
        e1 = quat.item(1)
        e2 = quat.item(2)
        e3 = quat.item(3)

        # put the quaternion on the GUI
        self.e0box.delete(0.0, 20.20)
        self.e0box.insert(0.0, 'quaternion = \n' + str(quat))

        self.THETA = np.arccos(e0) * 2.0
        # put the number on the GUI
        self.ThetaBox.delete(0.0, 20.20)
        self.ThetaBox.insert(
            0.0, 'theta = \n' + str(round(np.degrees(self.THETA), 5)) + ' deg')

        self.vector_v = quat[1:, :] * np.sin(self.THETA / 2)
        # put the number on the GUI
        self.VectorBox.delete(0.0, 20.20)
        showv = np.copy(self.vector_v)
        showv[2] = -showv[2]
        self.VectorBox.insert(0.0,
                              'v = \n' + str(showv / np.linalg.norm(showv)))

        # make the vector_v big for plotting purposes
        test = 8 * self.vector_v / np.linalg.norm(self.vector_v)
        if not np.isnan(self.vector_v.item(0)):
            R = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1]])
            self.vector_v = R @ test

        self.plot()
コード例 #3
0
ファイル: trim.py プロジェクト: eyler94/EE674LQR
def compute_trim(mav, Va, gamma):
    # define initial state and input
    e = Euler2Quaternion(0., gamma, 0.)
    state0 = np.array([[0],  # (0)
                       [0],   # (1)
                       [mav._state[2]],   # (2)
                       [Va],    # (3)
                       [0],    # (4)
                       [0],    # (5)
                       [e.item(0)],    # (6)
                       [e.item(1)],    # (7)
                       [e.item(2)],    # (8)
                       [e.item(3)],    # (9)
                       [0],    # (10)
                       [0],    # (11)
                       [0]     # (12)
                       ])
    delta0 = np.array([
                       [0.],  #de
                       [0.5], #dt
                       [0.0], #da
                       [0.0], #dr
                       ])
    x0 = np.concatenate((state0, delta0), axis=0)
    # define equality constraints
    bnds = ((None, None),(None, None),(None, None),(None, None),\
            (None, None),(None, None),(None, None),(None, None),\
            (None, None),(None, None),(None, None),(None, None),(None, None),\
            (-1.0,1.0),(-1.0,1.0),(-1.0,1.0),(-1.0,1.0))
    cons = ({'type': 'eq',
             'fun': lambda x: np.array([
                                x[3]**2 + x[4]**2 + x[5]**2 - Va**2,  # magnitude of velocity vector is Va
                                x[4],  # v=0, force side velocity to be zero
                                x[6]**2 + x[7]**2 + x[8]**2 + x[9]**2 - 1.,  # force quaternion to be unit length
                                x[7], # e1=0  - forcing e1=e3=0 ensures zero roll and zero yaw in trim
                                x[9], # e3=0
                                x[10], # p=0  - angular rates should all be zero
                                x[11], # q=0
                                x[12], # r=0
                                ]),
             'jac': lambda x: np.array([
                                [0., 0., 0., 2*x[3], 2*x[4], 2*x[5], 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 0., 0., 2*x[6], 2*x[7], 2*x[8], 2*x[9], 0., 0., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
                                [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
                                ])
             })
    # solve the minimization problem to find the trim states and inputs
    res = minimize(trim_objective, x0, method='SLSQP', args = (mav, Va, gamma),bounds=bnds,
                   constraints=cons, options={'ftol': 1e-10, 'disp': True})
    # extract trim state and input and return
    trim_state = np.array([res.x[0:13]]).T
    trim_input = np.array([res.x[13:17]]).T
    return trim_state, trim_input
コード例 #4
0
def quaternion_state(x_euler):
    # convert state x_euler with attitude represented by Euler angles
    # to x_quat with attitude represented by quaternions

    e = Euler2Quaternion(x_euler.item(6), x_euler.item(7), x_euler.item(8))
    x_quat = np.array([[x_euler.item(0)], [x_euler.item(1)], [x_euler.item(2)],
                       [x_euler.item(3)], [x_euler.item(4)], [x_euler.item(5)],
                       [e.item(0)], [e.item(1)], [e.item(2)], [e.item(3)],
                       [x_euler.item(9)], [x_euler.item(10)],
                       [x_euler.item(11)]])

    return x_quat
def quaternion_state(x_euler):
    # convert state x_euler with attitude represented by Euler angles
    # to x_quat with attitude represented by quaternions
    phi = x_euler[6]
    theta = x_euler[7]
    psi = x_euler[8]
    e0, e1, e2, e3 = Euler2Quaternion(phi, theta, psi)
    x_quat = x_euler.copy()
    x_quat[6] = e0
    x_quat[7] = e1
    x_quat[8] = e2
    x_quat = np.insert(x_quat, 9, [e3], axis=0)
    return x_quat
コード例 #6
0
ファイル: compute_models.py プロジェクト: mjhaskell/EE_674_py
def quaternion_state(x_euler):
    # convert state x_euler with attitude represented by Euler angles
    # to x_quat with attitude represented by quaternions
    phi = x_euler.item(6)
    theta = x_euler.item(7)
    psi = x_euler.item(8)
    q = Euler2Quaternion(phi, theta, psi)
    x_quat = np.empty((13, 1))
    x_quat[:6] = x_euler[:6]
    x_quat[6:10] = q
    x_quat[10:13] = x_euler[9:12]

    return x_quat
コード例 #7
0
    def showMeQuat(self):
        beginquat = np.array([[1, 0, 0, 0]]).T
        endquat = Euler2Quaternion(self.phi, self.theta, self.psi)
        dist = np.linalg.norm(beginquat - endquat)
        howmany = int(dist * 100 / 1.2)
        e0 = np.linspace(beginquat.item(0), endquat.item(0), num=howmany)
        e1 = np.linspace(beginquat.item(1), endquat.item(1), num=howmany)
        e2 = np.linspace(beginquat.item(2), endquat.item(2), num=howmany)
        e3 = np.linspace(beginquat.item(3), endquat.item(3), num=howmany)

        for i in range(howmany):
            quat = np.array([[e0[i], e1[i], e2[i], e3[i]]]).T
            phi, theta, psi = Quaternion2Euler(quat)
            self.plot2(phi, theta, psi)

        self.plot2(self.phi, self.theta, self.psi)
コード例 #8
0
def quaternion_state(x_euler):
    # convert state x_euler with attitude represented by Euler angles
    # to x_quat with attitude represented by quaternions
    e = Euler2Quaternion(x_euler[6], x_euler[7], x_euler[8])
    x_quat = np.array([
        [x_euler[0][0]],  # (0)
        [x_euler[1][0]],  # (1)
        [x_euler[2][0]],  # (2)
        [x_euler[3][0]],  # (3)
        [x_euler[4][0]],  # (4)
        [x_euler[5][0]],  # (5)
        [e[0][0]],  # (6)
        [e[1][0]],  # (7)
        [e[2][0]],  # (8)
        [e[3][0]],  # (9)
        [x_euler[9][0]],  # (10)
        [x_euler[10][0]],  # (11)
        [x_euler[11][0]]
    ])  # (12)
    return x_quat
コード例 #9
0
def compute_trim(mav, Va, gamma, R, display=False):
    # define initial state and input
    e = Euler2Quaternion(0.0, gamma, 0.0)
    state0 = np.array([
        [mav._state.item(0)],  # (0) Position North
        [mav._state.item(1)],  # (1) Position East
        [mav._state.item(2)],  # (2) Position Down
        [Va],  # (3) Velocity body x
        [0.0],  # (4) Velocity body y
        [0.0],  # (5) Velocity body z
        [e.item(0)],  # (6) Quaternion e0
        [e.item(1)],  # (7) Quaternion e1
        [e.item(2)],  # (8) Quaternion e2
        [e.item(3)],  # (9) Quaternion e3
        [0.0],  # (10) Angular velocity body x
        [0.0],  # (11) Angular velocity body y
        [0.0]
    ])  # (12) Angular velocity body z
    delta0 = np.array([
        [0.0],  # Aeleron
        [0.0],  # Elevator
        [0.0],  # Rudder
        [0.5]
    ])  # Throttle
    x0 = np.concatenate((state0, delta0), axis=0)
    # define equality constraints
    cons = ({
        'type':
        'eq',
        'fun':
        lambda x: np.array([
            x[3]**2 + x[4]**2 + x[
                5]**2 - Va**2,  # magnitude of velocity vector is Va
            x[4],  # v=0, force side velocity to be zero
            x[6]**2 + x[7]**2 + x[8]**2 + x[9]**2 -
            1.,  # force quaternion to be unit length
            x[
                7
            ],  # e1=0  - forcing e1=e3=0 ensures zero roll and zero yaw in trim
            x[9],  # e3=0
            x[10],  # p=0  - angular rates should all be zero
            x[11],  # q=0
            x[12],  # r=0
        ]),
        'jac':
        lambda x: np.array([
            [
                0., 0., 0., 2 * x[3], 2 * x[4], 2 * x[5], 0., 0., 0., 0., 0.,
                0., 0., 0., 0., 0., 0.
            ],
            [
                0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 2 * x[6], 2 * x[7], 2 * x[8], 2 * x[9],
                0., 0., 0., 0., 0., 0., 0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
                0.
            ],
        ])
    })
    # solve the minimization problem to find the trim states and inputs
    res = minimize(trim_objective,
                   x0,
                   method='SLSQP',
                   args=(mav, Va, gamma, R),
                   constraints=cons,
                   options={
                       'ftol': 1e-10,
                       'disp': True
                   })
    # extract trim state and input and return
    trim_state = np.array([res.x[0:13]]).T
    trim_input = np.array([res.x[13:17]]).T

    if display:
        print("Optimized Trim Output")
        print("trim_states: \n", trim_state, "\n")
        print("trim_inputs: \n", trim_input, "\n")

    return trim_state, trim_input
コード例 #10
0
#   Initial conditions for MAV
pn0 = 0.  # initial north position
pe0 = 0.  # initial east position
pd0 = -100.0  # initial down position
u0 = 25.  # initial velocity along body x-axis
v0 = 0.  # initial velocity along body y-axis
w0 = 0.  # initial velocity along body z-axis
phi0 = 0.  # initial roll angle
theta0 = 0.1  # initial pitch angle
psi0 = 0.0  # initial yaw angle
p0 = 0.0  # initial roll rate
q0 = 0.0  # initial pitch rate
r0 = 0.0  # initial yaw rate
Va0 = np.sqrt(u0**2 + v0**2 + w0**2)
#   Quaternion State
e = Euler2Quaternion(phi0, theta0, psi0)
e0 = e.item(0)
e1 = e.item(1)
e2 = e.item(2)
e3 = e.item(3)

#   Initial conditions noise for MAV
p_sigma = 0  #10
pn0_n = pn0 + np.random.normal(0, p_sigma)  # initial north position
pe0_n = pe0 + np.random.normal(0, p_sigma)  # initial east position
pd0_n = pd0 + np.random.normal(0, p_sigma)  # initial down position
vel_sigma = 0  #1
u0_n = u0 + np.random.normal(0,
                             vel_sigma)  # initial velocity along body x-axis
v0_n = v0 + np.random.normal(0,
                             vel_sigma)  # initial velocity along body y-axis
コード例 #11
0
pn0 = 0.  # initial north position
pe0 = 0.  # initial east position
pd0 = -20.0  # initial down position
u0 = 25.  # initial velocity along body x-axis
v0 = 0.  # initial velocity along body y-axis
w0 = 0.  # initial velocity along body z-axis
phi0 = 0.  # initial roll angle
theta0 = 0.  # initial pitch angle
psi0 = 0.0  # initial yaw angle
p0 = 0  # initial roll rate
q0 = 0  # initial pitch rate
r0 = 0  # initial yaw rate
Va0 = np.sqrt(u0**2 + v0**2 + w0**2)
#   Quaternion State
angles = [phi0, theta0, psi0]
e = Euler2Quaternion(angles)
# e0 = e.item(0)
# e1 = e.item(1)
# e2 = e.item(2)
# e3 = e.item(3)

e0 = e[0]
e1 = e[1]
e2 = e[2]
e3 = e[3]
######################################################################################
#   Physical Parameters
######################################################################################
mass = 13.5  #kg
Jx = 0.8244  #kg m^2
Jy = 1.135
コード例 #12
0
def compute_trim(mav, Va, gamma):
    phi = 0.0
    theta = gamma
    psi = 0.0
    e0, e1, e2, e3 = Euler2Quaternion(phi, theta, psi)
    # define initial state and input
    state0 = np.array([
        [mav._state.item(0)],  #pn
        [mav._state.item(1)],  #pe
        [mav._state.item(2)],  #pd
        [Va],  # u0
        [0.0],  # v0
        [0.0],  # w0
        [e0],  # e0
        [e1],  # e1
        [e2],  # e2
        [e3],  # e3
        [0.0],  # p0
        [0.0],  # q0
        [0.0]
    ])  # r0
    delta_a = 0.0
    delta_e = 0.0
    delta_r = 0.0
    delta_t = 0.5
    delta0 = np.array([[delta_a, delta_e, delta_r, delta_t]]).T
    x0 = np.concatenate((state0, delta0), axis=0)
    # define equality constraints
    cons = ({
        'type':
        'eq',
        'fun':
        lambda x: np.array([
            x[3]**2 + x[4]**2 + x[
                5]**2 - Va**2,  # magnitude of velocity vector is Va
            x[4],  # v=0, force side velocity to be zero
            x[6]**2 + x[7]**2 + x[8]**2 + x[9]**2 -
            1.,  # force quaternion to be unit length
            x[
                7
            ],  # e1=0  - forcing e1=e3=0 ensures zero roll and zero yaw in trim
            x[9],  # e3=0
            x[10],  # p=0  - angular rates should all be zero
            x[11],  # q=0
            x[12],  # r=0
        ]),
        'jac':
        lambda x: np.array([
            [
                0., 0., 0., 2 * x[3], 2 * x[4], 2 * x[5], 0., 0., 0., 0., 0.,
                0., 0., 0., 0., 0., 0.
            ],
            [
                0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 2 * x[6], 2 * x[7], 2 * x[8], 2 * x[9],
                0., 0., 0., 0., 0., 0., 0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
                0.
            ],
        ])
    })
    # solve the minimization problem to find the trim states and inputs
    res = minimize(trim_objective,
                   x0,
                   method='SLSQP',
                   args=(mav, Va, gamma),
                   constraints=cons,
                   options={
                       'ftol': 1e-10,
                       'disp': True
                   })
    # extract trim state and input and return
    trim_state = np.array([res.x[0:13]]).T
    trim_input = np.array([res.x[13:17]]).T
    return trim_state, trim_input
コード例 #13
0
wind = wind_simulation(SIM.ts_simulation)
mav = mav_dynamics(SIM.ts_simulation)
ctrl = quatopilot(SIM.ts_simulation)

# # autopilot commands -- Hover (In development)
# commands = msg_quatopilot()
# commands.p_ref = np.array([0, 0, -100])
# rpy = np.array([0, 90, 0])
# commands.q_ref = Euler2Quaternion(np.radians(rpy[0]), np.radians(rpy[1]), np.radians(rpy[2]))
# commands.u_ref = 0

# autopilot commands -- Off Axis
commands = msg_quatopilot()
commands.p_ref = np.array([10, 0, -100])
rpy = np.array([15, 10, -10])
commands.q_ref = Euler2Quaternion(np.radians(rpy[0]), np.radians(rpy[1]),
                                  np.radians(rpy[2]))
commands.u_ref = 20

# # autopilot commands -- Straight and Level
# commands = msg_quatopilot()
# commands.p_ref = np.array([10, 0, -100])
# rpy = np.array([0, 30, 0])
# commands.q_ref = Euler2Quaternion(np.radians(rpy[0]), np.radians(rpy[1]), np.radians(rpy[2]))
# commands.u_ref = 20

# # autopilot commands -- Straight-Up
# commands = msg_quatopilot()
# commands.p_ref = np.array([40, 0, -110])
# rpy = np.array([0, 85, 0])
# commands.q_ref = Euler2Quaternion(np.radians(rpy[0]), np.radians(rpy[1]), np.radians(rpy[2]))
# commands.u_ref = 15
コード例 #14
0
ファイル: trim.py プロジェクト: lucianzhong/MAV_Autopilot
def compute_trim(mav, Va, gamma):
    # define initial state and input
    e = Euler2Quaternion(0, gamma, 0)
    state0 = np.array([[
        0., 0., -100., Va, 0., 0.,
        e.item(0),
        e.item(1),
        e.item(2),
        e.item(3), 0., 0., 0.
    ]]).T
    delta0 = np.array([[0., 0.5, 0., 0.]]).T
    x0 = np.concatenate((state0, delta0), axis=0)
    # define equality constraints
    cons = ({
        'type':
        'eq',
        'fun':
        lambda x: np.array([
            x[3]**2 + x[4]**2 + x[
                5]**2 - Va**2,  # magnitude of velocity vector is Va
            x[4],  # v=0, force side velocity to be zero
            x[6]**2 + x[7]**2 + x[8]**2 + x[9]**2 -
            1.,  # force quaternion to be unit length
            x[
                7
            ],  # e1=0  - forcing e1=e3=0 ensures zero roll and zero yaw in trim
            x[9],  # e3=0
            x[10],  # p=0  - angular rates should all be zero
            x[11],  # q=0
            x[12],  # r=0
        ]),
        'jac':
        lambda x: np.array([
            [
                0., 0., 0., 2 * x[3], 2 * x[4], 2 * x[5], 0., 0., 0., 0., 0.,
                0., 0., 0., 0., 0., 0.
            ],
            [
                0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 2 * x[6], 2 * x[7], 2 * x[8], 2 * x[9],
                0., 0., 0., 0., 0., 0., 0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
                0.
            ],
            [
                0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
                0.
            ],
        ])
    })
    # solve the minimization problem to find the trim states and inputs
    res = minimize(trim_objective,
                   x0,
                   method='SLSQP',
                   args=(mav, Va, gamma),
                   constraints=cons,
                   options={
                       'ftol': 1e-10,
                       'disp': True
                   })
    # extract trim state and input and return
    trim_state = np.array([res.x[0:13]]).T
    trim_input = np.array([
        res.x[13:17]
    ]).T  #These inputs are the same. Do I need to recalculate them?
    return trim_state, trim_input