コード例 #1
0
ファイル: mongo.py プロジェクト: Casolt/blaze
def post_compute(e, q, d):
    """
    Execute a query using MongoDB's aggregation pipeline

    The compute_up functions operate on Mongo Collection / list-of-dict
    queries.  Once they're done we need to actually execute the query on
    MongoDB.  We do this using the aggregation pipeline framework.

    http://docs.mongodb.org/manual/core/aggregation-pipeline/
    """
    d = {'$project': toolz.merge({'_id': 0},  # remove mongo identifier
                                 dict((col, 1) for col in e.fields))}
    q = q.append(d)

    if not e.dshape.shape:  # not a collection
        result = q.coll.aggregate(list(q.query))['result'][0]
        if isscalar(e.dshape.measure):
            return result[e._name]
        else:
            return get(e.fields, result)

    dicts = q.coll.aggregate(list(q.query))['result']

    if isscalar(e.dshape.measure):
        return list(pluck(e.fields[0], dicts, default=None))  # dicts -> values
    else:
        return list(pluck(e.fields, dicts, default=None))  # dicts -> tuples
コード例 #2
0
ファイル: worker_monitor.py プロジェクト: coobas/distributed
def resource_append(lists, msg):
    L = list(msg.values())
    if not L:
        return
    for k in ['cpu', 'memory-percent']:
        lists[k].append(mean(pluck(k, L)) / 100)

    lists['time'].append(mean(pluck('time', L)) * 1000)
コード例 #3
0
ファイル: compiler.py プロジェクト: jcrist/datashader
def compile_components(summary, schema):
    """Given a ``Summary`` object and a table schema, returning 5 sub-functions.

    Parameters
    ----------
    summary : Summary
        The expression describing the aggregations to be computed.

    Returns
    -------
    A tuple of the following functions:

    ``create(shape)``
        Takes the aggregate shape, and returns a tuple of initialized numpy
        arrays.

    ``info(df)``
        Takes a dataframe, and returns preprocessed 1D numpy arrays of the
        needed columns.

    ``append(i, x, y, *aggs_and_cols)``
        Appends the ``i``th row of the table to the ``(x, y)`` bin, given the
        base arrays and columns in ``aggs_and_cols``. This does the bulk of the
        work.

    ``combine(base_tuples)``
        Combine a list of base tuples into a single base tuple. This forms the
        reducing step in a reduction tree.

    ``finalize(aggs)``
        Given a tuple of base numpy arrays, returns the finalized
        ``dynd`` array.
    """
    paths, reds = zip(*preorder_traversal(summary))

    # List of base reductions (actually computed)
    bases = list(unique(concat(r._bases for r in reds)))
    dshapes = [b.out_dshape(schema) for b in bases]
    # List of tuples of (append, base, input columns, temps)
    calls = [_get_call_tuples(b, d) for (b, d) in zip(bases, dshapes)]
    # List of unique column names needed
    cols = list(unique(concat(pluck(2, calls))))
    # List of temps needed
    temps = list(pluck(3, calls))

    create = make_create(bases, dshapes)
    info = make_info(cols)
    append = make_append(bases, cols, calls)
    combine = make_combine(bases, dshapes, temps)
    finalize = make_finalize(bases, summary, schema)

    return create, info, append, combine, finalize
コード例 #4
0
ファイル: profile.py プロジェクト: tomMoral/distributed
def get_profile(history, recent=None, start=None, stop=None, key=None):
    now = time()
    if start is None:
        istart = 0
    else:
        istart = bisect.bisect_left(history, (start,))

    if stop is None:
        istop = None
    else:
        istop = bisect.bisect_right(history, (stop,)) + 1
        if istop >= len(history):
            istop = None  # include end

    if istart == 0 and istop is None:
        history = list(history)
    else:
        iistop = len(history) if istop is None else istop
        history = [history[i] for i in range(istart, iistop)]

    prof = merge(*toolz.pluck(1, history))

    if not history:
        return create()

    if recent:
        prof = merge(prof, recent)

    return prof
コード例 #5
0
ファイル: utils.py プロジェクト: kwin-wang/odo
def records_to_tuples(ds, data):
    """ Transform records into tuples

    Examples
    --------
    >>> seq = [{'a': 1, 'b': 10}, {'a': 2, 'b': 20}]
    >>> list(records_to_tuples('var * {a: int, b: int}', seq))
    [(1, 10), (2, 20)]

    >>> records_to_tuples('{a: int, b: int}', seq[0])  # single elements
    (1, 10)

    >>> records_to_tuples('var * int', [1, 2, 3])  # pass through on non-records
    [1, 2, 3]

    See Also
    --------

    tuples_to_records
    """
    if isinstance(ds, (str, unicode)):
        ds = dshape(ds)
    if isinstance(ds.measure, Record) and len(ds.shape) == 1:
        return pluck(ds.measure.names, data, default=None)
    if isinstance(ds.measure, Record) and len(ds.shape) == 0:
        return get(ds.measure.names, data)
    if not isinstance(ds.measure, Record):
        return data
    raise NotImplementedError()
コード例 #6
0
ファイル: dot.py プロジェクト: CaptainAL/Spyder
def dot_graph(filename='conversions'):
    # Edges from Convert
    dg = nx.DiGraph()
    for a, b in convert.graph.edges():
        cost = convert.graph.edge[a][b]['cost']
        dg.add_edge(cls_name(a), cls_name(b),
                    cost=cost,
                    penwidth=max(log(1./(cost + 0.06)), 1))


    # Edges from Append
    for a, b in append.funcs:
        if b is not object and a != b:
            dg.add_edge(cls_name(b), cls_name(a), color='blue')


    # Color edges
    for n in convert.graph.nodes() + list(pluck(0, append.funcs)):
        if issubclass(n, tuple(ooc_types)):
            dg.node[cls_name(n)]['color'] = 'red'

    # Convert to pydot
    p = nx.to_pydot(dg)

    p.set_overlap(False)
    p.set_splines(True)

    with open(filename + '.dot', 'w') as f:
        f.write(p.to_string())

    os.system('neato -Tpdf %s.dot -o %s.pdf' % (filename, filename))
    print("Writing graph to %s.pdf" % filename)
    os.system('neato -Tpng %s.dot -o %s.png' % (filename, filename))
    print("Writing graph to %s.png" % filename)
コード例 #7
0
ファイル: test_worker.py プロジェクト: mindis/distributed
    def f(c, a, b):
        aa = rpc(ip=a.ip, port=a.port)
        bb = rpc(ip=b.ip, port=b.port)

        result = yield aa.identity()
        assert not a.active
        response = yield aa.compute(key='x',
                                    function=dumps(add),
                                    args=dumps([1, 2]),
                                    who_has={},
                                    close=True)
        assert not a.active
        assert response['status'] == 'OK'
        assert a.data['x'] == 3
        assert c.who_has['x'] == {a.address}
        assert isinstance(response['compute-start'], float)
        assert isinstance(response['compute-stop'], float)
        assert isinstance(response['thread'], int)

        response = yield bb.compute(key='y',
                                    function=dumps(add),
                                    args=dumps(['x', 10]),
                                    who_has={'x': [a.address]})
        assert response['status'] == 'OK'
        assert b.data['y'] == 13
        assert c.who_has['y'] == {b.address}
        assert response['nbytes'] == sizeof(b.data['y'])
        assert isinstance(response['transfer-start'], float)
        assert isinstance(response['transfer-stop'], float)

        def bad_func():
            1 / 0

        response = yield bb.compute(key='z',
                                    function=dumps(bad_func),
                                    args=dumps(()),
                                    close=True)
        assert not b.active
        assert response['status'] == 'error'
        assert isinstance(loads(response['exception']), ZeroDivisionError)
        if sys.version_info[0] >= 3:
            assert any('1 / 0' in line
                      for line in pluck(3, traceback.extract_tb(
                          loads(response['traceback'])))
                      if line)

        aa.close_streams()
        yield a._close()

        assert a.address not in c.ncores and b.address in c.ncores

        assert list(c.ncores.keys()) == [b.address]

        assert isinstance(b.address, str)
        assert b.ip in b.address
        assert str(b.port) in b.address

        bb.close_streams()
        yield b._close()
コード例 #8
0
 def _set_last_times(self, platform_id, fetched):
     with self.times_lock:
         try:
             new_max = max(pluck(1, concat(fetched.itervalues())))
             if new_max > self._last_times.get(platform_id, 0):
                 self._last_times[platform_id] = new_max
         except ValueError:
             pass
コード例 #9
0
ファイル: test_mongo.py プロジェクト: Curezhang/odo
def test_append_convert(empty_bank, raw_bank):
    ds = discover(raw_bank)
    assert set(ds.measure.names) == {'name', 'amount'}

    append(empty_bank, raw_bank, dshape=ds)
    assert odo(empty_bank, list, dshape=ds) == list(
        pluck(ds.measure.names, raw_bank)
    )
コード例 #10
0
def resource_append(lists, msg):
    L = list(msg.values())
    if not L:
        return
    for k in ['cpu', 'memory-percent']:
        lists[k].append(mean(pluck(k, L)) / 100)

    lists['time'].append(mean(pluck('time', L)) * 1000)
    if len(lists['time']) >= 2:
        t1, t2 = lists['time'][-2], lists['time'][-1]
        interval = (t2 - t1) / 1000
    else:
        interval = 0.5
    send = mean(pluck('network-send', L, 0))
    lists['network-send'].append(send / 2**20 / (interval or 0.5))
    recv = mean(pluck('network-recv', L, 0))
    lists['network-recv'].append(recv / 2**20 / (interval or 0.5))
コード例 #11
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_monthly_keys(self):
     actual = list(
         pluck(
             'key',
             generate_intervals('Monthly', '2012-12-12', '2013-03-19')
         )
     )
     expected = ['12M12', '13M01', '13M02', '13M03']
     self.assertEqual(actual, expected)
コード例 #12
0
ファイル: test_worker.py プロジェクト: frol/distributed
    def f(c, a, b):
        aa = rpc(ip=a.ip, port=a.port)
        bb = rpc(ip=b.ip, port=b.port)

        result = yield aa.identity()
        assert not a.active
        response = yield aa.compute(key='x',
                                    function=dumps(add),
                                    args=dumps([1, 2]),
                                    who_has={},
                                    close=True)
        assert not a.active
        assert response['status'] == 'OK'
        assert a.data['x'] == 3
        assert c.who_has['x'] == {a.address}
        assert isinstance(response['compute_start'], float)
        assert isinstance(response['compute_stop'], float)
        assert isinstance(response['thread'], Integral)

        response = yield bb.compute(key='y',
                                    function=dumps(add),
                                    args=dumps(['x', 10]),
                                    who_has={'x': [a.address]})
        assert response['status'] == 'OK'
        assert b.data['y'] == 13
        assert c.who_has['y'] == {b.address}
        assert response['nbytes'] == sizeof(b.data['y'])
        assert isinstance(response['transfer_start'], float)
        assert isinstance(response['transfer_stop'], float)

        def bad_func():
            1 / 0

        response = yield bb.compute(key='z',
                                    function=dumps(bad_func),
                                    args=dumps(()),
                                    close=True)
        assert not b.active
        assert response['status'] == 'error'
        assert isinstance(loads(response['exception']), ZeroDivisionError)
        if sys.version_info[0] >= 3:
            assert any('1 / 0' in line for line in pluck(
                3, traceback.extract_tb(loads(response['traceback']))) if line)

        aa.close_streams()
        yield a._close()

        assert a.address not in c.ncores and b.address in c.ncores

        assert list(c.ncores.keys()) == [b.address]

        assert isinstance(b.address, str)
        assert b.ip in b.address
        assert str(b.port) in b.address

        bb.close_streams()
        yield b._close()
コード例 #13
0
ファイル: reductions.py プロジェクト: tingxin/dask
def arg_reduction(x, chunk, combine, agg, axis=None, split_every=None, out=None):
    """ Generic function for argreduction.

    Parameters
    ----------
    x : Array
    chunk : callable
        Partialed ``arg_chunk``.
    combine : callable
        Partialed ``arg_combine``.
    agg : callable
        Partialed ``arg_agg``.
    axis : int, optional
    split_every : int or dict, optional
    """
    if axis is None:
        axis = tuple(range(x.ndim))
        ravel = True
    elif isinstance(axis, Integral):
        axis = validate_axis(axis, x.ndim)
        axis = (axis,)
        ravel = x.ndim == 1
    else:
        raise TypeError("axis must be either `None` or int, "
                        "got '{0}'".format(axis))

    for ax in axis:
        chunks = x.chunks[ax]
        if len(chunks) > 1 and np.isnan(chunks).any():
            raise ValueError(
                "Arg-reductions do not work with arrays that have "
                "unknown chunksizes.  At some point in your computation "
                "this array lost chunking information"
            )

    # Map chunk across all blocks
    name = 'arg-reduce-{0}'.format(tokenize(axis, x, chunk,
                                            combine, split_every))
    old = x.name
    keys = list(product(*map(range, x.numblocks)))
    offsets = list(product(*(accumulate(operator.add, bd[:-1], 0)
                             for bd in x.chunks)))
    if ravel:
        offset_info = zip(offsets, repeat(x.shape))
    else:
        offset_info = pluck(axis[0], offsets)

    chunks = tuple((1, ) * len(c) if i in axis else c for (i, c)
                   in enumerate(x.chunks))
    dsk = dict(((name,) + k, (chunk, (old,) + k, axis, off)) for (k, off)
               in zip(keys, offset_info))
    # The dtype of `tmp` doesn't actually matter, just need to provide something
    graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x])
    tmp = Array(graph, name, chunks, dtype=x.dtype)
    dtype = np.argmin([1]).dtype
    result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine)
    return handle_out(out, result)
コード例 #14
0
ファイル: __init__.py プロジェクト: ibis-project/ibis
 def _metadata(self, query: str) -> Iterator[_ColumnMetadata]:
     for name, type, null in toolz.pluck(
         ["column_name", "column_type", "null"],
             self.con.execute(f"DESCRIBE {query}"),
     ):
         yield _ColumnMetadata(
             name=name,
             type=parse(type)(nullable=null.lower() == "yes"),
         )
コード例 #15
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_weekly_end_dates(self):
     actual = list(
         pluck(
             'end_date',
             generate_intervals('Weekly', '2012-08-19', '2012-08-24')
         )
     )
     expected = [getdate('2012-08-19'), getdate('2012-08-26')]
     self.assertEqual(actual, expected)
コード例 #16
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_yearly_end_dates(self):
     actual = list(
         pluck(
             'end_date',
             generate_intervals('Yearly', '2012-12-12', '2013-01-19')
         )
     )
     expected = [getdate('2012-12-31'), getdate('2013-12-31')]
     self.assertEqual(actual, expected)
コード例 #17
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_weekly_labels(self):
     actual = list(
         pluck(
             'label',
             generate_intervals('Weekly', '2012-08-19', '2012-08-24')
         )
     )
     expected = ['2012-08-13', '2012-08-20']
     self.assertEqual(actual, expected)
コード例 #18
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_yearly_keys(self):
     actual = list(
         pluck(
             'key',
             generate_intervals('Yearly', '2012-12-12', '2013-03-19')
         )
     )
     expected = ['12Y', '13Y']
     self.assertEqual(actual, expected)
コード例 #19
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_weekly_keys(self):
     actual = list(
         pluck(
             'key',
             generate_intervals('Weekly', '2012-08-19', '2012-09-12')
         )
     )
     expected = ['12W33', '12W34', '12W35', '12W36', '12W37']
     self.assertEqual(actual, expected)
コード例 #20
0
ファイル: test_helpers.py プロジェクト: Muzzy73/pos_bahrain
 def test_generate_intervals_yearly_labels(self):
     actual = list(
         pluck(
             'label',
             generate_intervals('Yearly', '2012-12-12', '2013-04-19')
         )
     )
     expected = ['2012', '2013']
     self.assertEqual(actual, expected)
コード例 #21
0
ファイル: reductions.py プロジェクト: yliapis/dask
def arg_reduction(x, chunk, combine, agg, axis=None, split_every=None, out=None):
    """ Generic function for argreduction.

    Parameters
    ----------
    x : Array
    chunk : callable
        Partialed ``arg_chunk``.
    combine : callable
        Partialed ``arg_combine``.
    agg : callable
        Partialed ``arg_agg``.
    axis : int, optional
    split_every : int or dict, optional
    """
    if axis is None:
        axis = tuple(range(x.ndim))
        ravel = True
    elif isinstance(axis, Integral):
        axis = validate_axis(axis, x.ndim)
        axis = (axis,)
        ravel = x.ndim == 1
    else:
        raise TypeError("axis must be either `None` or int, "
                        "got '{0}'".format(axis))

    for ax in axis:
        chunks = x.chunks[ax]
        if len(chunks) > 1 and np.isnan(chunks).any():
            raise ValueError(
                "Arg-reductions do not work with arrays that have "
                "unknown chunksizes.  At some point in your computation "
                "this array lost chunking information"
            )

    # Map chunk across all blocks
    name = 'arg-reduce-{0}'.format(tokenize(axis, x, chunk,
                                            combine, split_every))
    old = x.name
    keys = list(product(*map(range, x.numblocks)))
    offsets = list(product(*(accumulate(operator.add, bd[:-1], 0)
                             for bd in x.chunks)))
    if ravel:
        offset_info = zip(offsets, repeat(x.shape))
    else:
        offset_info = pluck(axis[0], offsets)

    chunks = tuple((1, ) * len(c) if i in axis else c for (i, c)
                   in enumerate(x.chunks))
    dsk = dict(((name,) + k, (chunk, (old,) + k, axis, off)) for (k, off)
               in zip(keys, offset_info))
    # The dtype of `tmp` doesn't actually matter, just need to provide something
    graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x])
    tmp = Array(graph, name, chunks, dtype=x.dtype)
    dtype = np.argmin([1]).dtype
    result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine)
    return handle_out(out, result)
コード例 #22
0
ファイル: mongo.py プロジェクト: holdenk/blaze
def post_compute(e, q, d):
    """
    Execute a query using MongoDB's aggregation pipeline

    The compute_one functions operate on Mongo Collection / list-of-dict
    queries.  Once they're done we need to actually execute the query on
    MongoDB.  We do this using the aggregation pipeline framework.

    http://docs.mongodb.org/manual/core/aggregation-pipeline/
    """
    q = q.append({'$project': toolz.merge({'_id': 0}, # remove mongo identifier
                                      dict((col, 1) for col in e.columns))})
    dicts = q.coll.aggregate(list(q.query))['result']

    if e.iscolumn:
        return list(pluck(e.columns[0], dicts)) # dicts -> values
    else:
        return list(pluck(e.columns, dicts))    # dicts -> tuples
コード例 #23
0
ファイル: reductions.py プロジェクト: yuanfeng0905/dask
def arg_reduction(x,
                  chunk,
                  combine,
                  agg,
                  axis=None,
                  split_every=None,
                  out=None):
    """ Generic function for argreduction.

    Parameters
    ----------
    x : Array
    chunk : callable
        Partialed ``arg_chunk``.
    combine : callable
        Partialed ``arg_combine``.
    agg : callable
        Partialed ``arg_agg``.
    axis : int, optional
    split_every : int or dict, optional
    """
    if axis is None:
        axis = tuple(range(x.ndim))
        ravel = True
    elif isinstance(axis, Integral):
        axis = validate_axis(axis, x.ndim)
        axis = (axis, )
        ravel = x.ndim == 1
    else:
        raise TypeError("axis must be either `None` or int, "
                        "got '{0}'".format(axis))

    # Map chunk across all blocks
    name = 'arg-reduce-{0}'.format(
        tokenize(axis, x, chunk, combine, split_every))
    old = x.name
    keys = list(product(*map(range, x.numblocks)))
    offsets = list(
        product(*(accumulate(operator.add, bd[:-1], 0) for bd in x.chunks)))
    if ravel:
        offset_info = zip(offsets, repeat(x.shape))
    else:
        offset_info = pluck(axis[0], offsets)

    chunks = tuple(
        (1, ) * len(c) if i in axis else c for (i, c) in enumerate(x.chunks))
    dsk = dict(((name, ) + k, (chunk, (old, ) + k, axis, off))
               for (k, off) in zip(keys, offset_info))
    # The dtype of `tmp` doesn't actually matter, just need to provide something
    tmp = Array(sharedict.merge(x.dask, (name, dsk),
                                dependencies={name: {x.name}}),
                name,
                chunks,
                dtype=x.dtype)
    dtype = np.argmin([1]).dtype
    result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine)
    return handle_out(out, result)
コード例 #24
0
ファイル: builders.py プロジェクト: xhochy/ursabot
    def combine_with(cls, workers, images, name=None, **kwargs):
        """Instantiates builders based on the available workers

        The workers and images are matched based on their architecture.

        Parameters
        ----------
        workers : List[DockerLatentWorker]
            Worker instances the builders may run on.
        images : List[DockerImage], default []
            Docker images the builder's steps may run in.
            Pass None to use class' images property.

        Returns
        -------
        docker_builder : List[DockerBuilder]
            Builder instances.
        """
        suitable_images = filter(InstanceOf(DockerImage), images)
        suitable_images = filter(cls.image_filter, suitable_images)

        suitable_workers = filter(InstanceOf(DockerLatentWorker), workers)
        suitable_workers = filter(cls.worker_filter, suitable_workers)
        suitable_workers = list(suitable_workers)

        # join the images with the suitable workers
        image_worker_pairs = [(image, worker) for image in suitable_images
                              for worker in suitable_workers
                              if worker.supports(image.platform)]

        # group the suitable workers for each image
        pairs_by_image = toolz.groupby(0, image_worker_pairs).items()
        workers_by_image = {
            image: list(toolz.pluck(1, pairs))
            for image, pairs in pairs_by_image
        }

        builders = []
        for image, workers in workers_by_image.items():
            if workers:
                builder_name = image.title or image.name.title()
                if name:
                    builder_name += f' {name}'

                builder = cls(name=builder_name,
                              image=image,
                              workers=workers,
                              **kwargs)
                builders.append(builder)
            else:
                warnings.warn(
                    f'{cls.__name__}: there are no docker workers available '
                    f'for platform `{image.platform}`, omitting image '
                    f'`{image}`')

        return builders
コード例 #25
0
ファイル: mongo.py プロジェクト: testmana2/blaze
def post_compute(e, q, scope=None):
    """Compute the result of a Broadcast expression.
    """
    columns = dict((col, 1) for qry in q.query for col in qry.get("$project", []))
    scope = {"$project": toolz.merge({"_id": 0}, dict((col, 1) for col in columns))}  # remove mongo identifier
    q = q.append(scope)
    dicts = get_result(q.coll.aggregate(list(q.query)))

    assert len(columns) == 1
    return list(pluck(first(columns.keys()), dicts))
コード例 #26
0
def test_min_max():
    loop = IOLoop.current()
    cluster = yield LocalCluster(0, scheduler_port=0, silence_logs=False,
                                 processes=False, diagnostics_port=None,
                                 loop=loop, asynchronous=True)
    yield cluster._start()
    try:
        adapt = Adaptive(cluster.scheduler, cluster, minimum=1, maximum=2,
                         interval='20 ms', wait_count=10)
        c = yield Client(cluster, asynchronous=True, loop=loop)

        start = time()
        while not cluster.scheduler.workers:
            yield gen.sleep(0.01)
            assert time() < start + 1

        yield gen.sleep(0.2)
        assert len(cluster.scheduler.workers) == 1
        assert frequencies(pluck(1, adapt.log)) == {'up': 1}

        futures = c.map(slowinc, range(100), delay=0.1)

        start = time()
        while len(cluster.scheduler.workers) < 2:
            yield gen.sleep(0.01)
            assert time() < start + 1

        assert len(cluster.scheduler.workers) == 2
        yield gen.sleep(0.5)
        assert len(cluster.scheduler.workers) == 2
        assert len(cluster.workers) == 2
        assert frequencies(pluck(1, adapt.log)) == {'up': 2}

        del futures

        start = time()
        while len(cluster.scheduler.workers) != 1:
            yield gen.sleep(0.01)
            assert time() < start + 2
        assert frequencies(pluck(1, adapt.log)) == {'up': 2, 'down': 1}
    finally:
        yield c._close()
        yield cluster._close()
コード例 #27
0
ファイル: test_adaptive.py プロジェクト: tomMoral/distributed
def test_min_max():
    loop = IOLoop.current()
    cluster = yield LocalCluster(0, scheduler_port=0, silence_logs=False,
                                 processes=False, diagnostics_port=None,
                                 loop=loop, asynchronous=True)
    yield cluster._start()
    try:
        adapt = Adaptive(cluster.scheduler, cluster, minimum=1, maximum=2,
                         interval='20 ms', wait_count=10)
        c = yield Client(cluster, asynchronous=True, loop=loop)

        start = time()
        while not cluster.scheduler.workers:
            yield gen.sleep(0.01)
            assert time() < start + 1

        yield gen.sleep(0.2)
        assert len(cluster.scheduler.workers) == 1
        assert frequencies(pluck(1, adapt.log)) == {'up': 1}

        futures = c.map(slowinc, range(100), delay=0.1)

        start = time()
        while len(cluster.scheduler.workers) < 2:
            yield gen.sleep(0.01)
            assert time() < start + 1

        assert len(cluster.scheduler.workers) == 2
        yield gen.sleep(0.5)
        assert len(cluster.scheduler.workers) == 2
        assert len(cluster.workers) == 2
        assert frequencies(pluck(1, adapt.log)) == {'up': 2}

        del futures

        start = time()
        while len(cluster.scheduler.workers) != 1:
            yield gen.sleep(0.01)
            assert time() < start + 2
        assert frequencies(pluck(1, adapt.log)) == {'up': 2, 'down': 1}
    finally:
        yield c.close()
        yield cluster.close()
def execute():
    subscriptions = frappe.get_all("Gym Subscription", {"is_training": 1})
    for name in pluck("name", subscriptions):
        from_date, to_date = frappe.db.get_value("Gym Subscription", name,
                                                 ["from_date", "to_date"])
        months = month_diff(from_date, to_date, as_dec=1)
        days = date_diff(add_days(to_date, 1), from_date)
        day_fraction = months / flt(days)
        frappe.db.set_value("Gym Subscription", name, "day_fraction",
                            day_fraction)
コード例 #29
0
def _get_user_companies(user):
    result = frappe.db.sql(
        """
            SELECT for_value FROM `tabUser Permission`
            WHERE allow='Company' AND user=%(user)s
        """,
        values={'user': user},
        as_dict=1,
    )
    return list(pluck('for_value', result))
コード例 #30
0
def dfs_decomposition_depth_tuple(RN, path_func, source_nodes=None):
    """
    Decompose network into lists of simply connected nodes
    For the routing problem, these sets of nodes are segments
    in a reach terminated by a junction, headwater, or tailwater.

    The function also identfies the network depth, by reach,
    of each reach and the output of the function is a list of tuples
    in the form: (network depth, [reach list]).
    The order of these reaches are suitable to be parallelized as
    we guarantee that
      1) for any segment withn a reach, the predecessor segments
      appear before it in the reach; and
      2) for any reach, the predecessor reaches appear before it
      in the main list.
    This is accomplished by a depth first search on the reversed
    graph. The depth first search function logs the path from
    each node to any network break defined by the `path_func`.
    The network depth is counted as the number of successive breaks.
    Arguments:
        N (Dict[obj: List[obj]]): The graph
        path_func: partial function defining the Network breaking function
        source_nodes: starting points (default use the top of the network,
        which, for the reversed network passed to this function,
        is the set of tailwaters...)

    Method:
      call dfs_decomposition
      call coalesce reaches
      call count order -- currently done with another dfs, but
        could be level order (i.e., bfs)
      zip results together and return order/reach tuples as before.

    Returns:
        [List(tuple)]: List of tuples of (depth, path) to be processed
        in order.
    """
    reach_list = dfs_decomposition(RN, path_func, source_nodes)

    # Label coalesced reaches with the hydrologcially  downstream-most segment
    tag_idx = -1

    RN_coalesced = coalesce_reaches(RN, reach_list, tag_idx)
    # Make sure that if source_nodes is not empty,
    # this doesn't create some kind of nasty collision.
    # TODO: There might be a way to more gracefully handle this...

    if source_nodes is None:
        source_nodes = headwaters(RN_coalesced)
    else:
        if source_nodes not in RN_coalesced:
            raise AssertionError(
                "the source nodes *must* be members of the coalesced set...")
    depth_tuples = dfs_count_depth(RN_coalesced, source_nodes)
    return zip(pluck(0, depth_tuples), reach_list)
コード例 #31
0
def slice_slices_and_integers(out_name, in_name, blockdims, index):
    """
    Dask array indexing with slices and integers

    See Also
    --------

    _slice_1d
    """
    shape = tuple(cached_cumsum(dim, initial_zero=True)[-1] for dim in blockdims)

    for dim, ind in zip(shape, index):
        if np.isnan(dim) and ind != slice(None, None, None):
            raise ValueError("Arrays chunk sizes are unknown: %s", shape)

    assert all(isinstance(ind, (slice, Integral)) for ind in index)
    assert len(index) == len(blockdims)

    # Get a list (for each dimension) of dicts{blocknum: slice()}
    block_slices = list(map(_slice_1d, shape, blockdims, index))
    sorted_block_slices = [sorted(i.items()) for i in block_slices]

    # (in_name, 1, 1, 2), (in_name, 1, 1, 4), (in_name, 2, 1, 2), ...
    in_names = list(product([in_name], *[pluck(0, s) for s in sorted_block_slices]))

    # (out_name, 0, 0, 0), (out_name, 0, 0, 1), (out_name, 0, 1, 0), ...
    out_names = list(product([out_name],
                             *[range(len(d))[::-1] if i.step and i.step < 0 else range(len(d))
                               for d, i in zip(block_slices, index)
                               if not isinstance(i, Integral)]))

    all_slices = list(product(*[pluck(1, s) for s in sorted_block_slices]))

    dsk_out = {out_name: (getitem, in_name, slices)
               for out_name, in_name, slices
               in zip(out_names, in_names, all_slices)}

    new_blockdims = [new_blockdim(d, db, i)
                     for d, i, db in zip(shape, index, blockdims)
                     if not isinstance(i, Integral)]

    return dsk_out, new_blockdims
コード例 #32
0
ファイル: slicing.py プロジェクト: gdmcbain/dask
def slice_slices_and_integers(out_name, in_name, blockdims, index):
    """
    Dask array indexing with slices and integers

    See Also
    --------

    _slice_1d
    """
    shape = tuple(map(sum, blockdims))

    assert all(isinstance(ind, (slice, int, long)) for ind in index)
    assert len(index) == len(blockdims)

    # Get a list (for each dimension) of dicts{blocknum: slice()}
    block_slices = list(map(_slice_1d, shape, blockdims, index))
    sorted_block_slices = [sorted(i.items()) for i in block_slices]

    # (in_name, 1, 1, 2), (in_name, 1, 1, 4), (in_name, 2, 1, 2), ...
    in_names = list(
        product([in_name], *[pluck(0, s) for s in sorted_block_slices]))

    # (out_name, 0, 0, 0), (out_name, 0, 0, 1), (out_name, 0, 1, 0), ...
    out_names = list(
        product([out_name], *[
            range(len(d))[::-1] if i.step and i.step < 0 else range(len(d))
            for d, i in zip(block_slices, index)
            if not isinstance(i, (int, long))
        ]))

    all_slices = list(product(*[pluck(1, s) for s in sorted_block_slices]))

    dsk_out = dict(
        (out_name, (getitem, in_name, slices))
        for out_name, in_name, slices in zip(out_names, in_names, all_slices))

    new_blockdims = [
        new_blockdim(d, db, i) for d, i, db in zip(shape, index, blockdims)
        if not isinstance(i, (int, long))
    ]

    return dsk_out, new_blockdims
コード例 #33
0
ファイル: slicing.py プロジェクト: mrocklin/dask
def slice_slices_and_integers(out_name, in_name, blockdims, index):
    """
    Dask array indexing with slices and integers

    See Also
    --------

    _slice_1d
    """
    shape = tuple(map(sum, blockdims))

    for dim, ind in zip(shape, index):
        if np.isnan(dim) and ind != slice(None, None, None):
            raise ValueError("Arrays chunk sizes are unknown: %s", shape)

    assert all(isinstance(ind, (slice, Integral)) for ind in index)
    assert len(index) == len(blockdims)

    # Get a list (for each dimension) of dicts{blocknum: slice()}
    block_slices = list(map(_slice_1d, shape, blockdims, index))
    sorted_block_slices = [sorted(i.items()) for i in block_slices]

    # (in_name, 1, 1, 2), (in_name, 1, 1, 4), (in_name, 2, 1, 2), ...
    in_names = list(product([in_name], *[pluck(0, s) for s in sorted_block_slices]))

    # (out_name, 0, 0, 0), (out_name, 0, 0, 1), (out_name, 0, 1, 0), ...
    out_names = list(product([out_name],
                             *[range(len(d))[::-1] if i.step and i.step < 0 else range(len(d))
                               for d, i in zip(block_slices, index)
                               if not isinstance(i, Integral)]))

    all_slices = list(product(*[pluck(1, s) for s in sorted_block_slices]))

    dsk_out = {out_name: (getitem, in_name, slices)
               for out_name, in_name, slices
               in zip(out_names, in_names, all_slices)}

    new_blockdims = [new_blockdim(d, db, i)
                     for d, i, db in zip(shape, index, blockdims)
                     if not isinstance(i, Integral)]

    return dsk_out, new_blockdims
コード例 #34
0
ファイル: worker_monitor.py プロジェクト: danring/distributed
def resource_append(lists, msg):
    L = list(msg.values())
    if not L:
        return
    try:
        for k in ['cpu', 'memory-percent']:
            lists[k].append(mean(pluck(k, L)) / 100)
    except KeyError:  # initial messages sometimes lack resource data
        return        # this is safe to skip

    lists['time'].append(mean(pluck('time', L)) * 1000)
    if len(lists['time']) >= 2:
        t1, t2 = lists['time'][-2], lists['time'][-1]
        interval = (t2 - t1) / 1000
    else:
        interval = 0.5
    send = mean(pluck('network-send', L, 0))
    lists['network-send'].append(send / 2**20 / (interval or 0.5))
    recv = mean(pluck('network-recv', L, 0))
    lists['network-recv'].append(recv / 2**20 / (interval or 0.5))
コード例 #35
0
def resource_append(lists, msg):
    L = list(msg.values())
    if not L:
        return
    try:
        for k in ['cpu', 'memory-percent']:
            lists[k].append(mean(pluck(k, L)) / 100)
    except KeyError:  # initial messages sometimes lack resource data
        return  # this is safe to skip

    lists['time'].append(mean(pluck('time', L)) * 1000)
    if len(lists['time']) >= 2:
        t1, t2 = lists['time'][-2], lists['time'][-1]
        interval = (t2 - t1) / 1000
    else:
        interval = 0.5
    send = mean(pluck('network-send', L, 0))
    lists['network-send'].append(send / 2**20 / (interval or 0.5))
    recv = mean(pluck('network-recv', L, 0))
    lists['network-recv'].append(recv / 2**20 / (interval or 0.5))
コード例 #36
0
def _get_property_rent(property_group):
    sales_invoices = frappe.db.sql(
        """
            SELECT grand_total, outstanding_amount
            FROM `tabSales Invoice`
            WHERE pm_property_group = %s
            AND docstatus = 1
        """,
        property_group,
        as_dict=1,
    )

    grand_totals = sum(pluck("grand_total", sales_invoices))
    outstanding_amounts = sum(pluck("outstanding_amount", sales_invoices))

    return {
        "total_paid": grand_totals - outstanding_amounts,
        "total_unpaid": outstanding_amounts,
        "total_rent": grand_totals,
    }
コード例 #37
0
 def get_static(self, field):
     try:
         static_fields = pluck("field", self.statics)
         index = list(static_fields).index(field)
         return merge(
             super(Service, self).to_dict(include=["name"]),
             {"id": self.key.urlsafe()},
             self.statics[index],
         )
     except ValueError:
         return None
コード例 #38
0
ファイル: backend.py プロジェクト: philiplessner/USPTOAPI
def get_output(fields: List[str], response: Any) -> List[Tuple[str, ...]]:
    '''
    Extract raw output from returned query dictionary
    Parameters
        fields: list of output fields
        response: dict from query response
    Returns
        list of tuples for output table
    '''
    patents = response['patents']
    return list(pluck(fields, patents))
コード例 #39
0
ファイル: backend.py プロジェクト: martinfrasch/USPTOAPI
def get_output(fields: List[str], response: Any) -> List[Tuple[str, ...]]:
    '''
    Extract raw output from returned query dictionary
    Parameters
        fields: list of output fields
        response: dict from query response
    Returns
        list of tuples for output table
    '''
    patents = response['patents']
    return list(pluck(fields, patents))
コード例 #40
0
def _get_columns():
    columns = [
        make_column("posting_date", "Date", type="Date", width=90),
        make_column("net_total", type="Currency"),
        make_column("tax_total", type="Currency"),
        make_column("grand_total", type="Currency"),
        make_column("returns grand_total", "Returns Total", type="Currency"),
    ]
    mops = pluck("name", frappe.get_all("Mode of Payment"))
    return (columns + [make_column(x, type="Currency") for x in mops] +
            [make_column("total_collected", type="Currency")])
コード例 #41
0
ファイル: tasks.py プロジェクト: libermatic/gwi_customization
def _submit_draft_interests(posting_date):
    interests = frappe.get_all(
        "Microfinance Loan Interest",
        filters={
            "posting_date": posting_date,
            "dcostatus": 0
        },
    )
    for name in pluck("name", interests):
        doc = frappe.get_doc("Microfinance Loan Interest", name)
        doc.submit()
コード例 #42
0
def _get_membership_items():
    default_item_group = frappe.db.get_value('Gym Settings', None,
                                             'default_item_group')
    return pluck(
        'name',
        frappe.get_all('Item',
                       filters={
                           'item_group': default_item_group,
                           'disabled': 0,
                           'is_gym_membership_item': 1,
                       }),
    ) if default_item_group else []
コード例 #43
0
def select_to_iterator(sel, dshape=None, **kwargs):
    engine = sel.bind  # TODO: get engine from select

    with engine.connect() as conn:
        result = conn.execute(sel)
        if dshape and isscalar(dshape.measure):
            result = pluck(0, result)
        else:
            result = map(tuple, result)  # Turn RowProxy into tuple

        for item in result:
            yield item
コード例 #44
0
ファイル: mongo.py プロジェクト: wegamekinglc/blaze
def post_compute(e, q, scope=None):
    """Compute the result of a Broadcast expression.
    """
    columns = dict((col, 1) for qry in q.query
                   for col in qry.get('$project', []))
    scope = {'$project': toolz.merge({'_id': 0},  # remove mongo identifier
                                 dict((col, 1) for col in columns))}
    q = q.append(scope)
    dicts = get_result(q.coll.aggregate(list(q.query)))

    assert len(columns) == 1
    return list(pluck(first(columns.keys()), dicts))
コード例 #45
0
ファイル: mongo.py プロジェクト: Casolt/blaze
def post_compute(e, q, d):
    """Compute the result of a Broadcast expression.
    """
    columns = dict((col, 1) for qry in q.query
                   for col in qry.get('$project', []))
    d = {'$project': toolz.merge({'_id': 0},  # remove mongo identifier
                                 dict((col, 1) for col in columns))}
    q = q.append(d)
    dicts = q.coll.aggregate(list(q.query))['result']

    assert len(columns) == 1
    return list(pluck(first(columns.keys()), dicts))
コード例 #46
0
def _get_rent_actual(property_group):
    data = frappe.db.sql(
        """
            SELECT rental_rate
            FROM `tabProperty`
            WHERE property_group = %s
        """,
        property_group,
        as_dict=1,
    )

    return {"total_rent_actual": sum(pluck("rental_rate", data))}
コード例 #47
0
def get_leave_balance(employee, date):
    from erpnext.hr.doctype.leave_application.leave_application import (
        get_leave_balance_on,
    )

    carryable_leaves = frappe.get_all("Leave Type", {"is_carry_forward": 1})
    return sum(
        [
            get_leave_balance_on(employee, leave_type, date)
            for leave_type in pluck("name", carryable_leaves)
        ]
    )
コード例 #48
0
ファイル: test_bag.py プロジェクト: dukebody/dask
def test_groupby_tasks():
    b = db.from_sequence(range(160), npartitions=4)
    out = b.groupby(lambda x: x % 10, max_branch=4, method='tasks')
    partitions = dask.get(out.dask, out._keys())

    for a in partitions:
        for b in partitions:
            if a is not b:
                assert not set(pluck(0, a)) & set(pluck(0, b))


    b = db.from_sequence(range(1000), npartitions=100)
    out = b.groupby(lambda x: x % 123, method='tasks')
    assert len(out.dask) < 100**2
    partitions = dask.get(out.dask, out._keys())

    for a in partitions:
        for b in partitions:
            if a is not b:
                assert not set(pluck(0, a)) & set(pluck(0, b))


    b = db.from_sequence(range(10000), npartitions=345)
    out = b.groupby(lambda x: x % 2834, max_branch=24, method='tasks')
    partitions = dask.get(out.dask, out._keys())

    for a in partitions:
        for b in partitions:
            if a is not b:
                assert not set(pluck(0, a)) & set(pluck(0, b))
コード例 #49
0
ファイル: test_bag.py プロジェクト: serazing/dask
def test_groupby_tasks():
    b = db.from_sequence(range(160), npartitions=4)
    out = b.groupby(lambda x: x % 10, max_branch=4, method='tasks')
    partitions = dask.get(out.dask, out._keys())

    for a in partitions:
        for b in partitions:
            if a is not b:
                assert not set(pluck(0, a)) & set(pluck(0, b))

    b = db.from_sequence(range(1000), npartitions=100)
    out = b.groupby(lambda x: x % 123, method='tasks')
    assert len(out.dask) < 100**2
    partitions = dask.get(out.dask, out._keys())

    for a in partitions:
        for b in partitions:
            if a is not b:
                assert not set(pluck(0, a)) & set(pluck(0, b))

    b = db.from_sequence(range(10000), npartitions=345)
    out = b.groupby(lambda x: x % 2834, max_branch=24, method='tasks')
    partitions = dask.get(out.dask, out._keys())

    for a in partitions:
        for b in partitions:
            if a is not b:
                assert not set(pluck(0, a)) & set(pluck(0, b))
コード例 #50
0
ファイル: slicing.py プロジェクト: ankravch/dask
def slice_slices_and_integers(out_name, in_name, blockdims, index):
    """
    Dask array indexing with slices and integers

    See Also
    --------

    _slice_1d
    """
    shape = tuple(map(sum, blockdims))

    assert all(isinstance(ind, (slice, int, long)) for ind in index)
    assert len(index) == len(blockdims)

    # Get a list (for each dimension) of dicts{blocknum: slice()}
    block_slices = list(map(_slice_1d, shape, blockdims, index))
    sorted_block_slices = [sorted(i.items()) for i in block_slices]

    # (in_name, 1, 1, 2), (in_name, 1, 1, 4), (in_name, 2, 1, 2), ...
    in_names = list(product([in_name], *[pluck(0, s) for s in sorted_block_slices]))

    # (out_name, 0, 0, 0), (out_name, 0, 0, 1), (out_name, 0, 1, 0), ...
    out_names = list(product([out_name],
                             *[range(len(d))[::-1] if i.step and i.step < 0 else range(len(d))
                                 for d, i in zip(block_slices, index)
                                 if not isinstance(i, (int, long))]))

    all_slices = list(product(*[pluck(1, s) for s in sorted_block_slices]))

    dsk_out = dict((out_name, (getitem, in_name, slices))
                   for out_name, in_name, slices
                   in zip(out_names, in_names, all_slices))

    new_blockdims = [new_blockdim(d, db, i)
                     for d, i, db in zip(shape, index, blockdims)
                     if not isinstance(i, (int, long))]

    return dsk_out, new_blockdims
 def iter_enumerations():
     integers_or_symbols = concatv(
         find(children, type='integer'),
         find(children, type='symbol'),
         )
     values = list(pluck('value', integers_or_symbols))
     if values:
         yield make_json_ast_node(
             type='enumeration_values',
             values=values,
             )
     intervals = find_many_or_none(children, type='interval')
     if intervals is not None:
         yield from intervals
コード例 #52
0
ファイル: mongo.py プロジェクト: CaptainAL/Spyder
def _into_iter_mongodb(coll, columns=None, dshape=None):
    """ Into helper function

    Return both a lazy sequence of tuples and a list of column names
    """
    seq = coll.find()
    if not columns and dshape:
        columns = dshape.measure.names
    elif not columns:
        item = next(seq)
        seq = concat([[item], seq])
        columns = sorted(item.keys())
        columns.remove('_id')
    return columns, pluck(columns, seq)
コード例 #53
0
ファイル: reductions.py プロジェクト: togar-nk/dask
def arg_reduction(x, chunk, combine, agg, axis=None, split_every=None, out=None):
    """ Generic function for argreduction.

    Parameters
    ----------
    x : Array
    chunk : callable
        Partialed ``arg_chunk``.
    combine : callable
        Partialed ``arg_combine``.
    agg : callable
        Partialed ``arg_agg``.
    axis : int, optional
    split_every : int or dict, optional
    """
    if axis is None:
        axis = tuple(range(x.ndim))
        ravel = True
    elif isinstance(axis, int):
        if axis < 0:
            axis += x.ndim
        if axis < 0 or axis >= x.ndim:
            raise ValueError("axis entry is out of bounds")
        axis = (axis,)
        ravel = x.ndim == 1
    else:
        raise TypeError("axis must be either `None` or int, "
                        "got '{0}'".format(axis))

    # Map chunk across all blocks
    name = 'arg-reduce-chunk-{0}'.format(tokenize(chunk, axis))
    old = x.name
    keys = list(product(*map(range, x.numblocks)))
    offsets = list(product(*(accumulate(operator.add, bd[:-1], 0)
                             for bd in x.chunks)))
    if ravel:
        offset_info = zip(offsets, repeat(x.shape))
    else:
        offset_info = pluck(axis[0], offsets)

    chunks = tuple((1, ) * len(c) if i in axis else c for (i, c)
                   in enumerate(x.chunks))
    dsk = dict(((name,) + k, (chunk, (old,) + k, axis, off)) for (k, off)
               in zip(keys, offset_info))
    # The dtype of `tmp` doesn't actually matter, just need to provide something
    tmp = Array(sharedict.merge(x.dask, (name, dsk)), name, chunks, dtype=x.dtype)
    dtype = np.argmin([1]).dtype
    result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine)
    return handle_out(out, result)
 def visit_variable_calculee(self, node, children):
     description = find_one(children, type='string')['value']
     subtypes = find_many_or_none(children, type='variable_calculee_subtype') or []
     subtypes = sorted(pluck('value', subtypes))
     value_type = find_one_or_none(children, type='value_type')
     tableau = find_one_or_none(children, type='variable_calculee_tableau')
     return make_json_ast_node(
         base=('base' in subtypes) or None,
         description=description,
         linecol=True,
         name=children[0]['value'],
         node=node,
         restituee=('restituee' in subtypes) or None,
         tableau=None if tableau is None else tableau['dimension'],
         value_type=None if value_type is None else value_type['value'],
         )
コード例 #55
0
ファイル: features.py プロジェクト: vshesh/alignment-tree
def compress(sexp):
  if sexp is None: return None
  if not isinstance(sexp, list): return sexp
  if all(not isinstance(x, list) for x in sexp): return sexp

  # if both heads are the same then gut the children.
  children = list(map(compress, sexp[1:]))
  heads = set(extract_op(x) for x in t.pluck(0, filter(lambda x: isinstance(x,list),children)))
  heads.add(extract_op(sexp[0]))
  # number heads are fine, we just want to make sure that the
  # string type heads are all the same
  if len(heads) <= 1:
    return list(t.cons(sexp[0], t.concat(x[1:] if isinstance(x,list) else [x]
                                         for x in children)))

  return [sexp[0]]+children
コード例 #56
0
    def f(c, a, b):
        aa = rpc(ip=a.ip, port=a.port)
        bb = rpc(ip=b.ip, port=b.port)

        assert not a.active
        response, _ = yield aa.compute(key='x', function=add,
                                       args=[1, 2], who_has={},
                                       close=True)
        assert not a.active
        assert response == b'OK'
        assert a.data['x'] == 3
        assert c.who_has['x'] == set([(a.ip, a.port)])

        response, info = yield bb.compute(key='y', function=add,
                args=['x', 10], who_has={'x': {a.address}})
        assert response == b'OK'
        assert b.data['y'] == 13
        assert c.who_has['y'] == set([(b.ip, b.port)])
        assert info['nbytes'] == sizeof(b.data['y'])

        def bad_func():
            1 / 0

        response, content = yield bb.compute(key='z',
                function=bad_func, args=(), close=True)
        assert not b.active
        assert response == b'error'
        assert isinstance(content['exception'], ZeroDivisionError)
        if sys.version_info[0] >= 3:
            assert any('1 / 0' in line
                      for line in pluck(3, traceback.extract_tb(content['traceback']))
                      if line)

        aa.close_streams()
        yield a._close()

        assert a.address not in c.ncores and b.address in c.ncores

        assert list(c.ncores.keys()) == [(b.ip, b.port)]

        assert isinstance(b.address_string, str)
        assert b.ip in b.address_string
        assert str(b.port) in b.address_string

        bb.close_streams()
        yield b._close()
コード例 #57
0
ファイル: test_worker.py プロジェクト: tomMoral/distributed
def test_gather_many_small(c, s, a, *workers):
    a.total_out_connections = 2
    futures = yield c._scatter(list(range(100)))

    assert all(w.data for w in workers)

    def f(*args):
        return 10

    future = c.submit(f, *futures, workers=a.address)
    yield wait(future)

    types = list(pluck(0, a.log))
    req = [i for i, t in enumerate(types) if t == 'request-dep']
    recv = [i for i, t in enumerate(types) if t == 'receive-dep']
    assert min(recv) > max(req)

    assert a.comm_nbytes == 0
コード例 #58
0
ファイル: buffer.py プロジェクト: CaptainAL/Spyder
def keys_to_flush(lengths, fraction=0.1, maxcount=100000):
    """ Which keys to remove

    >>> lengths = {'a': 20, 'b': 10, 'c': 15, 'd': 15,
    ...            'e': 10, 'f': 25, 'g': 5}
    >>> keys_to_flush(lengths, 0.5)
    ['f', 'a']
    """
    top = topk(max(len(lengths) // 2, 1),
               lengths.items(),
               key=1)
    total = sum(lengths.values())
    cutoff = min(maxcount, max(1,
                   bisect(list(accumulate(add, pluck(1, top))),
                          total * fraction)))
    result = [k for k, v in top[:cutoff]]
    assert result
    return result
コード例 #59
0
ファイル: test_adaptive.py プロジェクト: tomMoral/distributed
def test_adapt_quickly():
    """ We want to avoid creating and deleting workers frequently

    Instead we want to wait a few beats before removing a worker in case the
    user is taking a brief pause between work
    """
    cluster = yield LocalCluster(0, asynchronous=True, processes=False,
                                 scheduler_port=0, silence_logs=False,
                                 diagnostics_port=None)
    client = yield Client(cluster, asynchronous=True)
    adapt = Adaptive(cluster.scheduler, cluster, interval=20, wait_count=5,
                     maximum=10)
    try:
        future = client.submit(slowinc, 1, delay=0.100)
        yield wait(future)
        assert len(adapt.log) == 1

        # Scale up when there is plenty of available work
        futures = client.map(slowinc, range(1000), delay=0.100)
        while frequencies(pluck(1, adapt.log)) == {'up': 1}:
            yield gen.sleep(0.01)
        assert len(adapt.log) == 2
        assert 'up' in adapt.log[-1]
        d = [x for x in adapt.log[-1] if isinstance(x, dict)][0]
        assert 2 < d['n'] <= adapt.maximum

        while len(cluster.scheduler.workers) < adapt.maximum:
            yield gen.sleep(0.01)

        del futures

        while len(cluster.scheduler.workers) > 1:
            yield gen.sleep(0.01)

        # Don't scale up for large sequential computations
        x = yield client.scatter(1)
        for i in range(100):
            x = client.submit(slowinc, x)

        yield gen.sleep(0.1)
        assert len(cluster.scheduler.workers) == 1
    finally:
        yield client.close()
        yield cluster.close()