def test_epoch( model: BaseModel, dataset, device, tracker: BaseTracker, checkpoint: ModelCheckpoint, voting_runs=1, tracker_options={}, ): loaders = dataset.test_dataloaders for loader in loaders: stage_name = loader.dataset.name tracker.reset(stage_name) for i in range(voting_runs): with Ctq(loader) as tq_test_loader: for data in tq_test_loader: with torch.no_grad(): model.set_input(data, device) model.forward() tracker.track(model, **tracker_options) tq_test_loader.set_postfix(**tracker.get_metrics(), color=COLORS.TEST_COLOR) tracker.finalise(**tracker_options) tracker.print_summary()
def run(model: BaseModel, dataset: BaseDataset, device, cfg): dataset.create_dataloaders( model, 1, False, cfg.training.num_workers, False, ) loader = dataset.test_dataloaders[0] list_res = [] with Ctq(loader) as tq_test_loader: for i, data in enumerate(tq_test_loader): with torch.no_grad(): model.set_input(data, device) model.forward() name_scene, name_pair_source, name_pair_target = dataset.test_dataset[ 0].get_name(i) input, input_target = model.get_input() xyz, xyz_target = input.pos, input_target.pos ind, ind_target = input.ind, input_target.ind matches_gt = torch.stack([ind, ind_target]).transpose(0, 1) feat, feat_target = model.get_output() rand = torch.randperm(len(feat))[:cfg.data.num_points] rand_target = torch.randperm( len(feat_target))[:cfg.data.num_points] res = dict(name_scene=name_scene, name_pair_source=name_pair_source, name_pair_target=name_pair_target) T_gt = estimate_transfo(xyz[matches_gt[:, 0]], xyz_target[matches_gt[:, 1]]) metric = compute_metrics( xyz[rand], xyz_target[rand_target], feat[rand], feat_target[rand_target], T_gt, sym=cfg.data.sym, tau_1=cfg.data.tau_1, tau_2=cfg.data.tau_2, rot_thresh=cfg.data.rot_thresh, trans_thresh=cfg.data.trans_thresh, use_ransac=cfg.data.use_ransac, ransac_thresh=cfg.data.first_subsampling, use_teaser=cfg.data.use_teaser, noise_bound_teaser=cfg.data.noise_bound_teaser, ) res = dict(**res, **metric) list_res.append(res) df = pd.DataFrame(list_res) output_path = os.path.join(cfg.training.checkpoint_dir, cfg.data.name, "matches") if not os.path.exists(output_path): os.makedirs(output_path, exist_ok=True) df.to_csv(osp.join(output_path, "final_res.csv")) print(df.groupby("name_scene").mean())
def train_epoch( epoch: int, model: BaseModel, dataset, device: str, tracker: BaseTracker, checkpoint: ModelCheckpoint, visualizer: Visualizer, debugging, ): early_break = getattr(debugging, "early_break", False) profiling = getattr(debugging, "profiling", False) model.train() tracker.reset("train") visualizer.reset(epoch, "train") train_loader = dataset.train_dataloader iter_data_time = time.time() with Ctq(train_loader) as tq_train_loader: for i, data in enumerate(tq_train_loader): model.set_input(data, device) t_data = time.time() - iter_data_time iter_start_time = time.time() model.optimize_parameters(epoch, dataset.batch_size) if i % 10 == 0: tracker.track(model) tq_train_loader.set_postfix(**tracker.get_metrics(), data_loading=float(t_data), iteration=float(time.time() - iter_start_time), color=COLORS.TRAIN_COLOR) if visualizer.is_active: visualizer.save_visuals(model.get_current_visuals()) iter_data_time = time.time() if early_break: break if profiling: if i > getattr(debugging, "num_batches", 50): return 0 metrics = tracker.publish(epoch) checkpoint.save_best_models_under_current_metrics(model, metrics, tracker.metric_func) log.info("Learning rate = %f" % model.learning_rate)
def run(model: BaseModel, dataset: BaseDataset, device, output_path, cfg): # Set dataloaders num_fragment = dataset.num_fragment if cfg.data.is_patch: for i in range(num_fragment): dataset.set_patches(i) dataset.create_dataloaders( model, cfg.batch_size, False, cfg.num_workers, False, ) loader = dataset.test_dataloaders()[0] features = [] scene_name, pc_name = dataset.get_name(i) with Ctq(loader) as tq_test_loader: for data in tq_test_loader: # pcd = open3d.geometry.PointCloud() # pcd.points = open3d.utility.Vector3dVector(data.pos[0].numpy()) # open3d.visualization.draw_geometries([pcd]) with torch.no_grad(): model.set_input(data, device) model.forward() features.append(model.get_output().cpu()) features = torch.cat(features, 0).numpy() log.info("save {} from {} in {}".format(pc_name, scene_name, output_path)) save(output_path, scene_name, pc_name, dataset.base_dataset[i].to("cpu"), features) else: dataset.create_dataloaders( model, 1, False, cfg.num_workers, False, ) loader = dataset.test_dataloaders()[0] with Ctq(loader) as tq_test_loader: for i, data in enumerate(tq_test_loader): with torch.no_grad(): model.set_input(data, device) model.forward() features = model.get_output()[0] # batch of 1 save(output_path, scene_name, pc_name, data.to("cpu"), features)
def run(model: BaseModel, dataset: BaseDataset, device, output_path): loaders = dataset.test_dataloaders predicted = {} for loader in loaders: loader.dataset.name with Ctq(loader) as tq_test_loader: for data in tq_test_loader: with torch.no_grad(): model.set_input(data, device) model.forward() predicted = { **predicted, **dataset.predict_original_samples(data, model.conv_type, model.get_output()) } save(output_path, predicted)
def test_epoch( epoch: int, model: BaseModel, dataset, device, tracker: BaseTracker, checkpoint: ModelCheckpoint, visualizer: Visualizer, debugging, ): early_break = getattr(debugging, "early_break", False) model.eval() loaders = dataset.test_dataloaders for loader in loaders: stage_name = loader.dataset.name tracker.reset(stage_name) visualizer.reset(epoch, stage_name) with Ctq(loader) as tq_test_loader: for data in tq_test_loader: with torch.no_grad(): model.set_input(data, device) model.forward() tracker.track(model) tq_test_loader.set_postfix(**tracker.get_metrics(), color=COLORS.TEST_COLOR) if visualizer.is_active: visualizer.save_visuals(model.get_current_visuals()) if early_break: break tracker.finalise() metrics = tracker.publish(epoch) tracker.print_summary() checkpoint.save_best_models_under_current_metrics( model, metrics, tracker.metric_func)
def eval_epoch( epoch: int, model: BaseModel, dataset, device, tracker: BaseTracker, checkpoint: ModelCheckpoint, visualizer: Visualizer, debugging, ): early_break = getattr(debugging, "early_break", False) model.eval() tracker.reset("val") visualizer.reset(epoch, "val") loader = dataset.val_dataloader with Ctq(loader) as tq_val_loader: for data in tq_val_loader: with torch.no_grad(): model.set_input(data, device) model.forward() tracker.track(model) tq_val_loader.set_postfix(**tracker.get_metrics(), color=COLORS.VAL_COLOR) if visualizer.is_active: visualizer.save_visuals(model.get_current_visuals()) if early_break: break metrics = tracker.publish(epoch) tracker.print_summary() checkpoint.save_best_models_under_current_metrics(model, metrics, tracker.metric_func)
def eval_epoch( model: BaseModel, dataset, device, tracker: BaseTracker, checkpoint: ModelCheckpoint, voting_runs=1, tracker_options={}, ): tracker.reset("val") loader = dataset.val_dataloader for i in range(voting_runs): with Ctq(loader) as tq_val_loader: for data in tq_val_loader: with torch.no_grad(): model.set_input(data, device) model.forward() tracker.track(model, **tracker_options) tq_val_loader.set_postfix(**tracker.get_metrics(), color=COLORS.VAL_COLOR) tracker.finalise(**tracker_options) tracker.print_summary()
def run(model: BaseModel, dataset: BaseDataset, device, cfg): reg_thresh = cfg.data.registration_recall_thresh if reg_thresh is None: reg_thresh = 0.2 print(time.strftime("%Y%m%d-%H%M%S")) dataset.create_dataloaders( model, 1, False, cfg.training.num_workers, False, ) loader = dataset.test_dataloaders[0] list_res = [] with Ctq(loader) as tq_test_loader: for i, data in enumerate(tq_test_loader): with torch.no_grad(): t0 = time.time() model.set_input(data, device) model.forward() t1 = time.time() name_scene, name_pair_source, name_pair_target = dataset.test_dataset[0].get_name(i) input, input_target = model.get_input() xyz, xyz_target = input.pos, input_target.pos ind, ind_target = input.ind, input_target.ind matches_gt = torch.stack([ind, ind_target]).transpose(0, 1) feat, feat_target = model.get_output() # rand = voxel_selection(xyz, grid_size=0.06, min_points=cfg.data.min_points) # rand_target = voxel_selection(xyz_target, grid_size=0.06, min_points=cfg.data.min_points) rand = torch.randperm(len(feat))[: cfg.data.num_points] rand_target = torch.randperm(len(feat_target))[: cfg.data.num_points] res = dict(name_scene=name_scene, name_pair_source=name_pair_source, name_pair_target=name_pair_target) T_gt = estimate_transfo(xyz[matches_gt[:, 0]], xyz_target[matches_gt[:, 1]]) t2 = time.time() metric = compute_metrics( xyz[rand], xyz_target[rand_target], feat[rand], feat_target[rand_target], T_gt, sym=cfg.data.sym, tau_1=cfg.data.tau_1, tau_2=cfg.data.tau_2, rot_thresh=cfg.data.rot_thresh, trans_thresh=cfg.data.trans_thresh, use_ransac=cfg.data.use_ransac, ransac_thresh=cfg.data.first_subsampling, use_teaser=cfg.data.use_teaser, noise_bound_teaser=cfg.data.noise_bound_teaser, xyz_gt=xyz[matches_gt[:, 0]], xyz_target_gt=xyz_target[matches_gt[:, 1]], registration_recall_thresh=reg_thresh, ) res = dict(**res, **metric) res["time_feature"] = t1 - t0 res["time_feature_per_point"] = (t1 - t0) / (len(input.pos) + len(input_target.pos)) res["time_prep"] = t2 - t1 list_res.append(res) df = pd.DataFrame(list_res) output_path = os.path.join(cfg.training.checkpoint_dir, cfg.data.name, "matches") if not os.path.exists(output_path): os.makedirs(output_path, exist_ok=True) df.to_csv(osp.join(output_path, "final_res_{}.csv".format(time.strftime("%Y%m%d-%H%M%S")))) print(df.groupby("name_scene").mean())
def run(model: BaseModel, dataset: BaseDataset, device, cfg): print(time.strftime("%Y%m%d-%H%M%S")) dataset.create_dataloaders( model, 1, False, cfg.training.num_workers, False, ) loader = dataset.test_dataset[0] ind = 0 if cfg.ind is not None: ind = cfg.ind t = 5 if cfg.t is not None: t = cfg.t r = 0.1 if cfg.r is not None: r = cfg.r print(loader) print(ind) data = loader[ind] data.batch = torch.zeros(len(data.pos)).long() data.batch_target = torch.zeros(len(data.pos_target)).long() print(data) with torch.no_grad(): model.set_input(data, device) model.forward() name_scene, name_pair_source, name_pair_target = dataset.test_dataset[ 0].get_name(ind) print(name_scene, name_pair_source, name_pair_target) input, input_target = model.get_input() xyz, xyz_target = input.pos, input_target.pos ind, ind_target = input.ind, input_target.ind matches_gt = torch.stack([ind, ind_target]).transpose(0, 1) feat, feat_target = model.get_output() # rand = voxel_selection(xyz, grid_size=0.06, min_points=cfg.data.min_points) # rand_target = voxel_selection(xyz_target, grid_size=0.06, min_points=cfg.data.min_points) rand = torch.randperm(len(feat))[:cfg.data.num_points] rand_target = torch.randperm(len(feat_target))[:cfg.data.num_points] T_gt = estimate_transfo(xyz[matches_gt[:, 0]].clone(), xyz_target[matches_gt[:, 1]].clone()) matches_pred = get_matches(feat[rand], feat_target[rand_target], sym=cfg.data.sym) # For color inliers = (torch.norm( xyz[rand][matches_pred[:, 0]] @ T_gt[:3, :3].T + T_gt[:3, 3] - xyz_target[rand_target][matches_pred[:, 1]], dim=1, ) < cfg.data.tau_1) # compute transformation T_teaser = teaser_pp_registration( xyz[rand][matches_pred[:, 0]], xyz_target[rand_target][matches_pred[:, 1]], noise_bound=cfg.data.tau_1) pcd_source = torch2o3d(input, [1, 0.7, 0.1]) pcd_target = torch2o3d(input_target, [0, 0.15, 0.9]) open3d.visualization.draw_geometries([pcd_source, pcd_target]) pcd_source.transform(T_teaser.cpu().numpy()) open3d.visualization.draw_geometries([pcd_source, pcd_target]) pcd_source.transform(np.linalg.inv(T_teaser.cpu().numpy())) rand_ind = torch.randperm(len(rand[matches_pred[:, 0]]))[:250] pcd_source.transform(T_gt.cpu().numpy()) kp_s = torch2o3d(input, ind=rand[matches_pred[:, 0]][rand_ind]) kp_s.transform(T_gt.cpu().numpy()) kp_t = torch2o3d(input_target, ind=rand_target[matches_pred[:, 1]][rand_ind]) match_visualizer(pcd_source, kp_s, pcd_target, kp_t, inliers[rand_ind].cpu().numpy(), radius=r, t=t)