Exemplo n.º 1
0
def test_epoch(
    model: BaseModel,
    dataset,
    device,
    tracker: BaseTracker,
    checkpoint: ModelCheckpoint,
    voting_runs=1,
    tracker_options={},
):

    loaders = dataset.test_dataloaders

    for loader in loaders:
        stage_name = loader.dataset.name
        tracker.reset(stage_name)
        for i in range(voting_runs):
            with Ctq(loader) as tq_test_loader:
                for data in tq_test_loader:
                    with torch.no_grad():
                        model.set_input(data, device)
                        model.forward()

                    tracker.track(model, **tracker_options)
                    tq_test_loader.set_postfix(**tracker.get_metrics(),
                                               color=COLORS.TEST_COLOR)

        tracker.finalise(**tracker_options)
        tracker.print_summary()
Exemplo n.º 2
0
def run(model: BaseModel, dataset: BaseDataset, device, cfg):
    dataset.create_dataloaders(
        model,
        1,
        False,
        cfg.training.num_workers,
        False,
    )
    loader = dataset.test_dataloaders[0]
    list_res = []
    with Ctq(loader) as tq_test_loader:
        for i, data in enumerate(tq_test_loader):
            with torch.no_grad():
                model.set_input(data, device)
                model.forward()

                name_scene, name_pair_source, name_pair_target = dataset.test_dataset[
                    0].get_name(i)
                input, input_target = model.get_input()
                xyz, xyz_target = input.pos, input_target.pos
                ind, ind_target = input.ind, input_target.ind
                matches_gt = torch.stack([ind, ind_target]).transpose(0, 1)
                feat, feat_target = model.get_output()
                rand = torch.randperm(len(feat))[:cfg.data.num_points]
                rand_target = torch.randperm(
                    len(feat_target))[:cfg.data.num_points]
                res = dict(name_scene=name_scene,
                           name_pair_source=name_pair_source,
                           name_pair_target=name_pair_target)
                T_gt = estimate_transfo(xyz[matches_gt[:, 0]],
                                        xyz_target[matches_gt[:, 1]])
                metric = compute_metrics(
                    xyz[rand],
                    xyz_target[rand_target],
                    feat[rand],
                    feat_target[rand_target],
                    T_gt,
                    sym=cfg.data.sym,
                    tau_1=cfg.data.tau_1,
                    tau_2=cfg.data.tau_2,
                    rot_thresh=cfg.data.rot_thresh,
                    trans_thresh=cfg.data.trans_thresh,
                    use_ransac=cfg.data.use_ransac,
                    ransac_thresh=cfg.data.first_subsampling,
                    use_teaser=cfg.data.use_teaser,
                    noise_bound_teaser=cfg.data.noise_bound_teaser,
                )
                res = dict(**res, **metric)
                list_res.append(res)

    df = pd.DataFrame(list_res)
    output_path = os.path.join(cfg.training.checkpoint_dir, cfg.data.name,
                               "matches")
    if not os.path.exists(output_path):
        os.makedirs(output_path, exist_ok=True)
    df.to_csv(osp.join(output_path, "final_res.csv"))
    print(df.groupby("name_scene").mean())
Exemplo n.º 3
0
def train_epoch(
    epoch: int,
    model: BaseModel,
    dataset,
    device: str,
    tracker: BaseTracker,
    checkpoint: ModelCheckpoint,
    visualizer: Visualizer,
    debugging,
):

    early_break = getattr(debugging, "early_break", False)
    profiling = getattr(debugging, "profiling", False)

    model.train()
    tracker.reset("train")
    visualizer.reset(epoch, "train")
    train_loader = dataset.train_dataloader

    iter_data_time = time.time()
    with Ctq(train_loader) as tq_train_loader:
        for i, data in enumerate(tq_train_loader):
            model.set_input(data, device)
            t_data = time.time() - iter_data_time

            iter_start_time = time.time()
            model.optimize_parameters(epoch, dataset.batch_size)
            if i % 10 == 0:
                tracker.track(model)

            tq_train_loader.set_postfix(**tracker.get_metrics(),
                                        data_loading=float(t_data),
                                        iteration=float(time.time() -
                                                        iter_start_time),
                                        color=COLORS.TRAIN_COLOR)

            if visualizer.is_active:
                visualizer.save_visuals(model.get_current_visuals())

            iter_data_time = time.time()

            if early_break:
                break

            if profiling:
                if i > getattr(debugging, "num_batches", 50):
                    return 0

    metrics = tracker.publish(epoch)
    checkpoint.save_best_models_under_current_metrics(model, metrics,
                                                      tracker.metric_func)
    log.info("Learning rate = %f" % model.learning_rate)
def run(model: BaseModel, dataset: BaseDataset, device, output_path, cfg):
    # Set dataloaders
    num_fragment = dataset.num_fragment
    if cfg.data.is_patch:
        for i in range(num_fragment):
            dataset.set_patches(i)
            dataset.create_dataloaders(
                model,
                cfg.batch_size,
                False,
                cfg.num_workers,
                False,
            )
            loader = dataset.test_dataloaders()[0]
            features = []
            scene_name, pc_name = dataset.get_name(i)

            with Ctq(loader) as tq_test_loader:
                for data in tq_test_loader:
                    # pcd = open3d.geometry.PointCloud()
                    # pcd.points = open3d.utility.Vector3dVector(data.pos[0].numpy())
                    # open3d.visualization.draw_geometries([pcd])
                    with torch.no_grad():
                        model.set_input(data, device)
                        model.forward()
                        features.append(model.get_output().cpu())
            features = torch.cat(features, 0).numpy()
            log.info("save {} from {} in  {}".format(pc_name, scene_name,
                                                     output_path))
            save(output_path, scene_name, pc_name,
                 dataset.base_dataset[i].to("cpu"), features)
    else:
        dataset.create_dataloaders(
            model,
            1,
            False,
            cfg.num_workers,
            False,
        )
        loader = dataset.test_dataloaders()[0]
        with Ctq(loader) as tq_test_loader:
            for i, data in enumerate(tq_test_loader):
                with torch.no_grad():
                    model.set_input(data, device)
                    model.forward()
                    features = model.get_output()[0]  # batch of 1
                    save(output_path, scene_name, pc_name, data.to("cpu"),
                         features)
Exemplo n.º 5
0
def run(model: BaseModel, dataset: BaseDataset, device, output_path):
    loaders = dataset.test_dataloaders
    predicted = {}
    for loader in loaders:
        loader.dataset.name
        with Ctq(loader) as tq_test_loader:
            for data in tq_test_loader:
                with torch.no_grad():
                    model.set_input(data, device)
                    model.forward()
                predicted = {
                    **predicted,
                    **dataset.predict_original_samples(data, model.conv_type,
                                                       model.get_output())
                }

    save(output_path, predicted)
Exemplo n.º 6
0
def test_epoch(
    epoch: int,
    model: BaseModel,
    dataset,
    device,
    tracker: BaseTracker,
    checkpoint: ModelCheckpoint,
    visualizer: Visualizer,
    debugging,
):
    early_break = getattr(debugging, "early_break", False)
    model.eval()

    loaders = dataset.test_dataloaders

    for loader in loaders:
        stage_name = loader.dataset.name
        tracker.reset(stage_name)
        visualizer.reset(epoch, stage_name)
        with Ctq(loader) as tq_test_loader:
            for data in tq_test_loader:
                with torch.no_grad():
                    model.set_input(data, device)
                    model.forward()

                tracker.track(model)
                tq_test_loader.set_postfix(**tracker.get_metrics(),
                                           color=COLORS.TEST_COLOR)

                if visualizer.is_active:
                    visualizer.save_visuals(model.get_current_visuals())

                if early_break:
                    break

        tracker.finalise()
        metrics = tracker.publish(epoch)
        tracker.print_summary()
        checkpoint.save_best_models_under_current_metrics(
            model, metrics, tracker.metric_func)
Exemplo n.º 7
0
def eval_epoch(
    epoch: int,
    model: BaseModel,
    dataset,
    device,
    tracker: BaseTracker,
    checkpoint: ModelCheckpoint,
    visualizer: Visualizer,
    debugging,
):

    early_break = getattr(debugging, "early_break", False)

    model.eval()
    tracker.reset("val")
    visualizer.reset(epoch, "val")
    loader = dataset.val_dataloader
    with Ctq(loader) as tq_val_loader:
        for data in tq_val_loader:
            with torch.no_grad():
                model.set_input(data, device)
                model.forward()

            tracker.track(model)
            tq_val_loader.set_postfix(**tracker.get_metrics(),
                                      color=COLORS.VAL_COLOR)

            if visualizer.is_active:
                visualizer.save_visuals(model.get_current_visuals())

            if early_break:
                break

    metrics = tracker.publish(epoch)
    tracker.print_summary()
    checkpoint.save_best_models_under_current_metrics(model, metrics,
                                                      tracker.metric_func)
Exemplo n.º 8
0
def eval_epoch(
    model: BaseModel,
    dataset,
    device,
    tracker: BaseTracker,
    checkpoint: ModelCheckpoint,
    voting_runs=1,
    tracker_options={},
):
    tracker.reset("val")
    loader = dataset.val_dataloader
    for i in range(voting_runs):
        with Ctq(loader) as tq_val_loader:
            for data in tq_val_loader:
                with torch.no_grad():
                    model.set_input(data, device)
                    model.forward()

                tracker.track(model, **tracker_options)
                tq_val_loader.set_postfix(**tracker.get_metrics(),
                                          color=COLORS.VAL_COLOR)

    tracker.finalise(**tracker_options)
    tracker.print_summary()
Exemplo n.º 9
0
def run(model: BaseModel, dataset: BaseDataset, device, cfg):

    reg_thresh = cfg.data.registration_recall_thresh
    if reg_thresh is None:
        reg_thresh = 0.2
    print(time.strftime("%Y%m%d-%H%M%S"))
    dataset.create_dataloaders(
        model, 1, False, cfg.training.num_workers, False,
    )
    loader = dataset.test_dataloaders[0]
    list_res = []
    with Ctq(loader) as tq_test_loader:
        for i, data in enumerate(tq_test_loader):
            with torch.no_grad():
                t0 = time.time()
                model.set_input(data, device)
                model.forward()
                t1 = time.time()
                name_scene, name_pair_source, name_pair_target = dataset.test_dataset[0].get_name(i)
                input, input_target = model.get_input()
                xyz, xyz_target = input.pos, input_target.pos
                ind, ind_target = input.ind, input_target.ind
                matches_gt = torch.stack([ind, ind_target]).transpose(0, 1)
                feat, feat_target = model.get_output()
                # rand = voxel_selection(xyz, grid_size=0.06, min_points=cfg.data.min_points)
                # rand_target = voxel_selection(xyz_target, grid_size=0.06, min_points=cfg.data.min_points)

                rand = torch.randperm(len(feat))[: cfg.data.num_points]
                rand_target = torch.randperm(len(feat_target))[: cfg.data.num_points]
                res = dict(name_scene=name_scene, name_pair_source=name_pair_source, name_pair_target=name_pair_target)
                T_gt = estimate_transfo(xyz[matches_gt[:, 0]], xyz_target[matches_gt[:, 1]])
                t2 = time.time()
                metric = compute_metrics(
                    xyz[rand],
                    xyz_target[rand_target],
                    feat[rand],
                    feat_target[rand_target],
                    T_gt,
                    sym=cfg.data.sym,
                    tau_1=cfg.data.tau_1,
                    tau_2=cfg.data.tau_2,
                    rot_thresh=cfg.data.rot_thresh,
                    trans_thresh=cfg.data.trans_thresh,
                    use_ransac=cfg.data.use_ransac,
                    ransac_thresh=cfg.data.first_subsampling,
                    use_teaser=cfg.data.use_teaser,
                    noise_bound_teaser=cfg.data.noise_bound_teaser,
                    xyz_gt=xyz[matches_gt[:, 0]],
                    xyz_target_gt=xyz_target[matches_gt[:, 1]],
                    registration_recall_thresh=reg_thresh,
                )
                res = dict(**res, **metric)
                res["time_feature"] = t1 - t0
                res["time_feature_per_point"] = (t1 - t0) / (len(input.pos) + len(input_target.pos))
                res["time_prep"] = t2 - t1

                list_res.append(res)

    df = pd.DataFrame(list_res)
    output_path = os.path.join(cfg.training.checkpoint_dir, cfg.data.name, "matches")
    if not os.path.exists(output_path):
        os.makedirs(output_path, exist_ok=True)
    df.to_csv(osp.join(output_path, "final_res_{}.csv".format(time.strftime("%Y%m%d-%H%M%S"))))
    print(df.groupby("name_scene").mean())
Exemplo n.º 10
0
def run(model: BaseModel, dataset: BaseDataset, device, cfg):
    print(time.strftime("%Y%m%d-%H%M%S"))
    dataset.create_dataloaders(
        model,
        1,
        False,
        cfg.training.num_workers,
        False,
    )
    loader = dataset.test_dataset[0]

    ind = 0
    if cfg.ind is not None:
        ind = cfg.ind
    t = 5
    if cfg.t is not None:
        t = cfg.t
    r = 0.1
    if cfg.r is not None:
        r = cfg.r
    print(loader)
    print(ind)
    data = loader[ind]
    data.batch = torch.zeros(len(data.pos)).long()
    data.batch_target = torch.zeros(len(data.pos_target)).long()
    print(data)
    with torch.no_grad():
        model.set_input(data, device)
        model.forward()

        name_scene, name_pair_source, name_pair_target = dataset.test_dataset[
            0].get_name(ind)
        print(name_scene, name_pair_source, name_pair_target)
        input, input_target = model.get_input()
        xyz, xyz_target = input.pos, input_target.pos
        ind, ind_target = input.ind, input_target.ind
        matches_gt = torch.stack([ind, ind_target]).transpose(0, 1)
        feat, feat_target = model.get_output()
        # rand = voxel_selection(xyz, grid_size=0.06, min_points=cfg.data.min_points)
        # rand_target = voxel_selection(xyz_target, grid_size=0.06, min_points=cfg.data.min_points)

        rand = torch.randperm(len(feat))[:cfg.data.num_points]
        rand_target = torch.randperm(len(feat_target))[:cfg.data.num_points]
        T_gt = estimate_transfo(xyz[matches_gt[:, 0]].clone(),
                                xyz_target[matches_gt[:, 1]].clone())
        matches_pred = get_matches(feat[rand],
                                   feat_target[rand_target],
                                   sym=cfg.data.sym)
        # For color
        inliers = (torch.norm(
            xyz[rand][matches_pred[:, 0]] @ T_gt[:3, :3].T + T_gt[:3, 3] -
            xyz_target[rand_target][matches_pred[:, 1]],
            dim=1,
        ) < cfg.data.tau_1)
        # compute transformation
        T_teaser = teaser_pp_registration(
            xyz[rand][matches_pred[:, 0]],
            xyz_target[rand_target][matches_pred[:, 1]],
            noise_bound=cfg.data.tau_1)
        pcd_source = torch2o3d(input, [1, 0.7, 0.1])

        pcd_target = torch2o3d(input_target, [0, 0.15, 0.9])
        open3d.visualization.draw_geometries([pcd_source, pcd_target])
        pcd_source.transform(T_teaser.cpu().numpy())
        open3d.visualization.draw_geometries([pcd_source, pcd_target])
        pcd_source.transform(np.linalg.inv(T_teaser.cpu().numpy()))
        rand_ind = torch.randperm(len(rand[matches_pred[:, 0]]))[:250]
        pcd_source.transform(T_gt.cpu().numpy())
        kp_s = torch2o3d(input, ind=rand[matches_pred[:, 0]][rand_ind])
        kp_s.transform(T_gt.cpu().numpy())
        kp_t = torch2o3d(input_target,
                         ind=rand_target[matches_pred[:, 1]][rand_ind])
        match_visualizer(pcd_source,
                         kp_s,
                         pcd_target,
                         kp_t,
                         inliers[rand_ind].cpu().numpy(),
                         radius=r,
                         t=t)