def create_non_homogeneus_cloud(self, symbolClasses): indicator = 1.0 ratio = global_v.N_LEARNING/(global_v.N_LEARNING+global_v.N_TEST) for cl in symbolClasses: for i in range(0, int(indicator)): # instance of new symbol distortedClass = SymbolClass(cl.name, cl.color) # randomize position around a given class(based on position) distortedClass.characteristicsValues = self.__generate_distortion( cl.characteristicsValues[:], global_v.HOMO_STD_DEV) scope = int((global_v.N_LEARNING + global_v.N_TEST)/int(indicator)) for j in range (0, scope): cloud_point = SymbolClass(cl.name, cl.color) cloud_point.characteristicsValues = self.__generate_distortion( distortedClass.characteristicsValues[:], global_v.NON_HOMO_STD_DEV) # store result if(j < ratio * scope): cl.learning_set.append(cloud_point) else: cl.test_set.append(cloud_point) # Info about number of created points console.write_non_homo(cl.name, int(indicator), "Symbol Class", "Groups") console.write_point_text_number(">> Number of distorted classes per symbol", len(cl.learning_set) + len(cl.test_set)) console.write_point_text_number(">> Number of learning set points", len(cl.learning_set)) console.write_point_text_number(">> Number of test set points", len(cl.test_set)) indicator += 0.5
def create_homogeneus_cloud(self, symbolClasses): for cl in symbolClasses: # Learning set for i in range(0, global_v.N_LEARNING + global_v.N_TEST): # instance of new symbol distortedClass = SymbolClass(cl.name, cl.color, type = SymbolType.NATIVE_LEARNING) # randomize position around a given class(based on position) distortedClass.characteristicsValues = self.__generate_distortion( cl.characteristicsValues[:], global_v.HOMO_STD_DEV) # store result if(i < global_v.N_LEARNING): cl.learning_set.append(distortedClass) else: cl.test_set.append(distortedClass) print(cl.name) console.write_point_text_number(">> Number of learning set points", len(cl.learning_set)) console.write_point_text_number(">> Number of test set points", len(cl.test_set))