def display_map(self, batch, tracks, idx): opt = self.opt for i in range(1): debugger = Debugger(opt, dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) debugger.add_img(img, img_id='track') for i in range(len(tracks)): dets = tracks[i].pred bbox = dets[:4] * self.opt.down_ratio w, h = bbox[2], bbox[3] bbox = np.array([ bbox[0] - w / 2, bbox[1] - h / 2, bbox[0] + w / 2, bbox[1] + h / 2 ]) debugger.add_coco_bbox(bbox, int(dets[-1]), tracks[i].track_id, img_id='track', tracking=True) debugger.save_all_imgs(opt.debug_dir, prefix=f'{idx}')
def debug(self, batch, output, iter_id): opt = self.opt wh = output['wh'] if opt.reg_bbox else None reg = output['reg'] if opt.reg_offset else None dets = ddd_decode(output['hm'], output['rot'], output['dep'], output['dim'], wh=wh, reg=reg, K=opt.K) # x, y, score, r1-r8, depth, dim1-dim3, cls dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) calib = batch['meta']['calib'].detach().numpy() # x, y, score, rot, depth, dim1, dim2, dim3 # if opt.dataset == 'gta': # dets[:, 12:15] /= 3 dets_pred = ddd_post_process( dets.copy(), batch['meta']['c'].detach().numpy(), batch['meta']['s'].detach().numpy(), calib, opt) dets_gt = ddd_post_process( batch['meta']['gt_det'].detach().numpy().copy(), batch['meta']['c'].detach().numpy(), batch['meta']['s'].detach().numpy(), calib, opt) #for i in range(input.size(0)): for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug==3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.opt.std + self.opt.mean) * 255.).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'hm_pred') debugger.add_blend_img(img, gt, 'hm_gt') # decode debugger.add_ct_detection( img, dets[i], show_box=opt.reg_bbox, center_thresh=opt.center_thresh, img_id='det_pred') debugger.add_ct_detection( img, batch['meta']['gt_det'][i].cpu().numpy().copy(), show_box=opt.reg_bbox, img_id='det_gt') debugger.add_3d_detection( batch['meta']['image_path'][i], dets_pred[i], calib[i], center_thresh=opt.center_thresh, img_id='add_pred') debugger.add_3d_detection( batch['meta']['image_path'][i], dets_gt[i], calib[i], center_thresh=opt.center_thresh, img_id='add_gt') # debugger.add_bird_view( # dets_pred[i], center_thresh=opt.center_thresh, img_id='bird_pred') # debugger.add_bird_view(dets_gt[i], img_id='bird_gt') debugger.add_bird_views( dets_pred[i], dets_gt[i], center_thresh=opt.center_thresh, img_id='bird_pred_gt') # debugger.add_blend_img(img, pred, 'out', white=True) debugger.compose_vis_add( batch['meta']['image_path'][i], dets_pred[i], calib[i], opt.center_thresh, pred, 'bird_pred_gt', img_id='out') # debugger.add_img(img, img_id='out') if opt.debug ==4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None dets = ctdet_decode(output['hm'], output['wh'], reg=reg, cat_spec_wh=opt.cat_spec_wh, opt=opt) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') if opt.edge_hm: edge_hm = output['edge_hm'][i].detach().cpu().numpy() edge_hm = edge_hm.reshape(4 * opt.num_edge_hm, -1, edge_hm.shape[1], edge_hm.shape[2]) edge_hm = edge_hm.sum(axis=0) edge_hm = debugger.gen_colormap(edge_hm) debugger.add_blend_img(img, edge_hm, 'edge_hm') gt_edge_hm = batch['edge_hm'][i].detach().cpu().numpy() gt_edge_hm = gt_edge_hm.reshape(4 * opt.num_edge_hm, -1, gt_edge_hm.shape[1], gt_edge_hm.shape[2]) gt_edge_hm = gt_edge_hm.sum(axis=0) gt_edge_hm = debugger.gen_colormap(gt_edge_hm) debugger.add_blend_img(img, gt_edge_hm, 'gt_edge_hm') for k in range(len(dets[i])): if dets[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None directs = output['direct'] dets = ctdet_line_decode(output['hm'], output['wh'], reg=reg, directs=directs, cat_spec_wh=opt.cat_spec_wh, K=opt.K, direct_loss=opt.direct_loss) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio if not self.opt.temporal_model and not opt.no_reconstruct_loss: dets_gt = batch['meta']['gt_line'].numpy().reshape( 1, -1, dets.shape[2] - 1 + 1) # +1 for direction dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose( 1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap( batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > opt.center_thresh: debugger.add_bbox_line(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred', direct=dets[i, k, 5]) debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: debugger.add_bbox_line_gt( dets_gt[i, k, :4], dets_gt[i, k, 5], dets_gt[i, k, 4], img_id='out_gt', direct=dets_gt[i, k, -1]) # direct=directs_gt[i, k]) if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None dets = ctdet_decode(output['hm'], output['wh'], reg=reg, cat_spec_wh=opt.cat_spec_wh, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :4] *= opt.down_ratio if opt.task == 'ctdet_semseg': seg_gt = batch['seg'][0][0].cpu().numpy() seg_pred = output['seg'].max(1)[1].squeeze_(1).squeeze_( 0).cpu().numpy() for i in range(1): debugger = Debugger(opt, dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > opt.vis_thresh: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.vis_thresh: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') if opt.save_video: # only save the predicted and gt images return debugger.imgs['out_pred'], debugger.imgs['out_gt'] pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') if opt.task == 'ctdet_semseg': debugger.visualize_masks(seg_gt, img_id='out_mask_gt') debugger.visualize_masks(seg_pred, img_id='out_mask_pred') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix=iter_id)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None angle = output['angle'] dets = ctdet_angle_decode(output['hm'], output['wh'], reg=reg, angle=angle, cat_spec_wh=opt.cat_spec_wh, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio dets_gt = batch['meta']['gt_det_angle'].numpy().reshape( 1, -1, dets.shape[2]) dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): # center predict scores if dets[i, k, 5] > opt.center_thresh: debugger.add_rotation_bbox(dets[i, k, :5], dets[i, k, -1], dets[i, k, 5], img_id='out_pred', show_txt=False) debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 5] > opt.center_thresh: debugger.add_rotation_bbox(dets_gt[i, k, :5], dets_gt[i, k, -1], dets_gt[i, k, 5], img_id='out_gt', show_txt=False) if opt.debug == 4: print(batch['meta']['img_id'][i]) a = batch['meta']['img_id'][i].detach().cpu() debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id), img_id=batch['meta']['img_id']) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt ###是否进行坐标offset reg reg = output['reg'] if opt.reg_offset else None ###将网络输出的hms经过decode得到detections: [bboxes, scores, clses] dets = ctdet_decode( output['hm'], output['wh'], reg=reg, cat_spec_wh=opt.cat_spec_wh, K=opt.K) ####创建一个没有梯度的变量dets,shape为(1,batch*k,6) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) ####对预测坐标进行变换---->下采样, down_ratio默认值为4 dets[:, :, :4] *= opt.down_ratio ####把dets_gt的shape变为(1,batch*k, 6) ####dets_gt为gt_bbox的位置信息,shape为(1,batch*k,6) dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) ####对gt坐标进行变换---->下采样, down_ratio默认值为4 dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger( dataset=opt.dataset, ipynb=(opt.debug==3), theme=opt.debugger_theme) ###将输入图片转化为cpu上的没有梯度的张量img img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) ###对输入图像进行标准化处理:乘上标准差再加上均值 img = np.clip((( img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) ####gen_colormap又是什么玩意??? ####output----->pred, batch------>gt pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) ####add_blend_img是用来干嘛??? debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') ###此时len(dets[i]==dets[0])==batch*k, for k in range(len(dets[i])): ###即某个score>thresh if dets[i, k, 4] > opt.center_thresh: ####在图像上画出检测框,坐标,score和cls debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_img(img, img_id='out_gt') ###len(dets_gt[i])为batch*k for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: ####画出gt_bbox debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): cfg = self.cfg reg = output[3] if cfg.LOSS.REG_OFFSET else None hm_hp = output[4] if cfg.LOSS.HM_HP else None hp_offset = output[5] if cfg.LOSS.REG_HP_OFFSET else None dets = multi_pose_decode( output[0], output[1], output[2], reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=cfg.TEST.TOPK) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES dets[:, :, 5:39] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :4] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES dets_gt[:, :, 5:39] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES for i in range(1): debugger = Debugger( dataset=cfg.SAMPLE_METHOD, ipynb=(cfg.DEBUG==3), theme=cfg.DEBUG_THEME) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip((( img * np.array(cfg.DATASET.STD).reshape(1,1,3).astype(np.float32) + cfg.DATASET.MEAN) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap(output[0][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > cfg.MODEL.CENTER_THRESH: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_coco_hp(dets[i, k, 5:39], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > cfg.MODEL.CENTER_THRESH: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') debugger.add_coco_hp(dets_gt[i, k, 5:39], img_id='out_gt') if cfg.LOSS.HM_HP: pred = debugger.gen_colormap_hp(output[4][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp(batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp') debugger.add_blend_img(img, gt, 'gt_hmhp') if cfg.DEBUG == 4: debugger.save_all_imgs(cfg.LOG_DIR, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None hm_hp = output['hm_hp'] if opt.hm_hp else None hp_offset = output['hp_offset'] if opt.reg_hp_offset else None dets = multi_pose_decode( output['hm'], output['wh'], output['hps'], reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.input_res / opt.output_res dets[:, :, 5:39] *= opt.input_res / opt.output_res dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :4] *= opt.input_res / opt.output_res dets_gt[:, :, 5:39] *= opt.input_res / opt.output_res for i in range(1): debugger = Debugger( dataset=opt.dataset, ipynb=(opt.debug==3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip((( img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_coco_hp(dets[i, k, 5:39], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') debugger.add_coco_hp(dets_gt[i, k, 5:39], img_id='out_gt') if opt.hm_hp: pred = debugger.gen_colormap_hp(output['hm_hp'][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp(batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp') debugger.add_blend_img(img, gt, 'gt_hmhp') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt detections = self.decode(output['hm_t'], output['hm_l'], output['hm_b'], output['hm_r'], output['hm_c']).detach().cpu().numpy() detections[:, :, :4] *= opt.input_res / opt.output_res for i in range(1): dataset = opt.dataset if opt.dataset == 'yolo': dataset = opt.names debugger = Debugger(dataset=dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) pred_hm = np.zeros((opt.input_res, opt.input_res, 3), dtype=np.uint8) gt_hm = np.zeros((opt.input_res, opt.input_res, 3), dtype=np.uint8) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.opt.std + self.opt.mean) * 255.).astype( np.uint8) for p in self.parts: tag = 'hm_{}'.format(p) pred = debugger.gen_colormap( output[tag][i].detach().cpu().numpy()) gt = debugger.gen_colormap( batch[tag][i].detach().cpu().numpy()) if p != 'c': pred_hm = np.maximum(pred_hm, pred) gt_hm = np.maximum(gt_hm, gt) if p == 'c' or opt.debug > 2: debugger.add_blend_img(img, pred, 'pred_{}'.format(p)) debugger.add_blend_img(img, gt, 'gt_{}'.format(p)) debugger.add_blend_img(img, pred_hm, 'pred') debugger.add_blend_img(img, gt_hm, 'gt') debugger.add_img(img, img_id='out') for k in range(len(detections[i])): if detections[i, k, 4] > 0.1: debugger.add_coco_bbox(detections[i, k, :4], detections[i, k, -1], detections[i, k, 4], img_id='out') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt wh = output['wh'] if opt.reg_bbox else None reg = output['reg'] if opt.reg_offset else None dets = car_pose_6dof_decode(output['hm'], output['rot'], output['dep'], wh=wh, reg=reg, K=opt.K) # x, y, score, r1-r4, depth, wh?, cls dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) c = batch['meta']['c'].detach().numpy() s = batch['meta']['s'].detach().numpy() calib = batch['meta']['calib'].detach().numpy() # yaw, pitch, roll, x, y, z, wh?, score dets_pred = car_6dof_post_process(dets.copy(), c, s, calib, opt) dets_gt = car_6dof_post_process( batch['meta']['gt_det'].detach().numpy().copy(), c, s, calib, opt) car_name = car_models.models[0].name car_model = self.models[car_name] for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.opt.std + self.opt.mean) * 255.).astype( np.uint8) if opt.debug_heatmap: pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap( batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'hm_pred') debugger.add_blend_img(img, gt, 'hm_gt') if opt.render_cars: debugger.render_cars(img, dets_pred[0], car_model, c, s, calib, opt, '3d_pred') debugger.render_cars(img, dets_gt[0], car_model, c, s, calib, opt, '3d_gt') if opt.debug == 4: prefix = '{}_{}_'.format(iter_id, batch['meta']['img_id'][0]) debugger.save_all_imgs(opt.debug_dir, prefix=prefix) else: debugger.show_all_imgs(pause=True)
def show_results(self, image, gts, dets, save_dir, img_name): debugger = Debugger(dataset='dota', ipynb=(self.opt.debug == 3), theme='white') debugger.add_img(image, img_name) for j in dets: for bbox in dets[j]: if bbox[5] > 0.01: debugger.add_rbbox(bbox[:5], j - 1, bbox[5], img_id=img_name) for ann in gts: bbox = ann['rbbox'] cat_id = ann['category_id'] debugger.add_rbbox(bbox, cat_id - 1, 1, img_id=img_name, gt=True) save_dir = os.path.join(save_dir, 'voc_results') debugger.save_all_imgs(save_dir)
def debug_for_polygon(self, batch, output, iter_id): opt = self.opt output = output[0] batch = batch[0] for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') debugger.add_img(img, img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None dets = rodet_decode(output['hm'], output['wh'], output['angle'], reg=reg, cat_spec_wh=opt.cat_spec_wh, cat_spec_angle=opt.cat_spec_angle, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio # dets_gt_dense = rodet_decode( # batch['hm'], batch['dense_wh'], batch['dense_angle'], reg=reg, # cat_spec_wh=opt.cat_spec_wh, cat_spec_angle=opt.cat_spec_angle, K=opt.K) # dets_gt_dense = dets_gt_dense.detach().cpu().numpy().reshape(1, -1, dets_gt_dense.shape[2]) # dets_gt_dense[:, :, :4] *= opt.down_ratio dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) img_name = batch['meta']['img_name'] dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) # gt_ang_mask = debugger.gen_colormap(batch['dense_angle_mask'][i].detach().cpu().numpy()) # gt_ang = debugger.gen_colormap(batch['dense_angle'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, '{}_pred_hm'.format(img_name)) # debugger.add_blend_img(img, gt_ang_mask, 'gt_angle_mask') # debugger.add_blend_img(img, gt_ang, 'gt_angle') debugger.add_blend_img(img, gt, '{}_gt_hm'.format(img_name)) debugger.add_img(img, img_id='{}_out_pred'.format(img_name)) for k in range(len(dets[i])): if dets[i, k, 5] > opt.center_thresh: # print("pred dets add_rbbox=======================") debugger.add_rbbox(dets[i, k, :5], dets[i, k, -1], dets[i, k, 5], show_txt=False, img_id='{}_out_pred'.format(img_name)) # debugger.add_img(img, img_id='{}_dets_gt_dense'.format(img_name)) # for k in range(len(dets_gt_dense[i])): # if dets_gt_dense[i, k, 5] > opt.center_thresh: # # print("pred dets add_rbbox=======================") # debugger.add_rbbox(dets_gt_dense[i, k, :5], dets_gt_dense[i, k, -1], # dets_gt_dense[i, k, 5], show_txt=False, img_id='{}_dets_gt_dense'.format(img_name)) debugger.add_img(img, img_id='{}_out_gt'.format(img_name)) for k in range(len(dets_gt[i])): if dets_gt[i, k, 5] > opt.center_thresh: # print("GT add_rbbox=======================") # 说明add_rbbox(self, rbbox, cat, conf=1, show_txt=True, img_id='default') # gt格式 gt_det.append([ct[0], ct[1], w, h, a, 1, cls_id]) debugger.add_rbbox(dets_gt[i, k, :5], dets_gt[i, k, -1], dets_gt[i, k, 5], show_txt=False, img_id='{}_out_gt'.format(img_name)) if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def detect(opt): os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str split = 'val' if not opt.trainval else 'test' dataset = YOLO(opt.data_dir, opt.flip, opt.vflip, opt.rotate, opt.scale, opt.shear, opt, split) opt = opts().update_dataset_info_and_set_heads(opt, dataset) print(opt) # log = Logger(opt) Detector = detector_factory[opt.task] detector = Detector(opt) debugger = Debugger(dataset=opt.names) dir_path = os.path.join(opt.save_dir, 'detect') if not os.path.exists(dir_path): os.mkdir(dir_path) images = [] if os.path.isfile(opt.image): if os.path.splitext(opt.image)[1] == '.txt': name = os.path.splitext(os.path.basename(opt.image))[0] dir_path = os.path.join(dir_path, name) if not os.path.exists(dir_path): os.mkdir(dir_path) with open(opt.image, 'r') as f: images.extend([l.rstrip().replace('.txt', '.jpg') for l in f.readlines()]) elif os.path.splitext(opt.image)[1] in ['.jpg', '.png', '.bmp']: images.append(opt.image) else: raise Exception('NOT SUPPORT FILE TYPE!!!') else: for file in os.listdir(opt.image): if os.path.splitext(file)[1] in ['.jpg', '.png', '.bmp']: images.append(os.path.join(opt.image, file)) num_iters = len(images) bar = Bar('{}'.format(opt.exp_id), max=num_iters) time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge'] avg_time_stats = {t: AverageMeter() for t in time_stats} for ind in range(num_iters): img_id = images[ind] ret = detector.run(img_id) Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format( ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td) for t in avg_time_stats: avg_time_stats[t].update(ret[t]) Bar.suffix = Bar.suffix + '|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format( t, tm=avg_time_stats[t]) bar.next() img_name = os.path.splitext(os.path.basename(img_id))[0] img = cv2.imread(img_id) h, w = img.shape[:2] pred = debugger.gen_colormap(ret['output']['hm'][0].detach().cpu().numpy()) debugger.add_blend_img(img, pred, img_name+'pred_hm') debugger.add_img(img, img_id=img_name) gt = np.loadtxt(img_id.replace('.jpg', '.txt')).reshape(-1, 5) if gt.size: x1 = w * (gt[:, 1] - gt[:, 3] / 2) y1 = h * (gt[:, 2] - gt[:, 4] / 2) x2 = w * (gt[:, 1] + gt[:, 3] / 2) y2 = h * (gt[:, 2] + gt[:, 4] / 2) gt[:, 1] = x1 gt[:, 2] = y1 gt[:, 3] = x2 gt[:, 4] = y2 for g in gt: debugger.add_gt_bbox(g, img_id=img_name) path = os.path.join(dir_path, os.path.basename(img_id).replace('.jpg', '.txt')) dets = np.zeros((0, 6), dtype=np.float32) for cls, det in ret['results'].items(): cls_id = np.ones((len(det), 1), dtype=np.float32) * (cls - 1) dets = np.append(dets, np.hstack((det, cls_id)), 0) for d in det: if d[-1] >= opt.vis_thresh: debugger.add_coco_bbox(d[:4], cls-1, d[-1], img_id=img_name) np.savetxt(path, dets) bar.finish() debugger.save_all_imgs(path=dir_path)
def train(self, cfg): # 设置gpu环境,考虑单卡多卡情况 gpus_str = '' if isinstance(cfg.gpus, (list, tuple)): cfg.gpus = [int(i) for i in cfg.gpus] for s in cfg.gpus: gpus_str += str(s) + ',' gpus_str = gpus_str[:-1] else: gpus_str = str(int(cfg.gpus)) cfg.gpus = [int(cfg.gpus)] os.environ['CUDA_VISIBLE_DEVICES'] = gpus_str cfg.gpus = [i for i in range(len(cfg.gpus)) ] if cfg.gpus[0] >= 0 else [-1] # 设置log model_dir = os.path.join(cfg.save_dir, cfg.id) debug_dir = os.path.join(model_dir, 'debug') if not os.path.exists(model_dir): os.makedirs(model_dir) if not os.path.exists(debug_dir): os.makedirs(debug_dir) logger = setup_logger(cfg.id, os.path.join(model_dir, 'log')) if USE_TENSORBOARD: writer = tensorboardX.SummaryWriter( log_dir=os.path.join(model_dir, 'log')) logger.info(cfg) gpus = cfg.gpus device = torch.device('cpu' if gpus[0] < 0 else 'cuda') lr = cfg.lr lr_step = cfg.lr_step num_epochs = cfg.num_epochs val_step = cfg.val_step sample_size = cfg.sample_size # 设置数据集 dataset = YOLO(cfg.data_dir, cfg.hflip, cfg.vflip, cfg.rotation, cfg.scale, cfg.shear, opt=cfg, split='train') names = dataset.class_name std = dataset.std mean = dataset.mean # 用数据集类别数设置预测网络 cfg.setup_head(dataset) trainloader = DataLoader(dataset, batch_size=cfg.batch_size, shuffle=True, num_workers=cfg.num_workers, pin_memory=True, drop_last=True) # val_dataset = YOLO(cfg.data_dir, cfg.hflip, cfg.vflip, cfg.rotation, cfg.scale, cfg.shear, opt=cfg, split='val') # valloader = DataLoader(val_dataset, batch_size=1, shuffle=True, num_workers=1, pin_memory=True) valid_file = cfg.val_dir if not cfg.val_dir == '' else os.path.join( cfg.data_dir, 'valid.txt') with open(valid_file, 'r') as f: val_list = [l.rstrip() for l in f.readlines()] net = create_model(cfg.arch, cfg.heads, cfg.head_conv, cfg.down_ratio, cfg.filters) optimizer = optim.Adam(net.parameters(), lr=lr) start_epoch = 0 if cfg.resume: pretrain = os.path.join(model_dir, 'model_last.pth') if os.path.exists(pretrain): print('resume model from %s' % pretrain) try: net, optimizer, start_epoch = load_model( net, pretrain, optimizer, True, lr, lr_step) except: print('\t... loading model error: ckpt may not compatible') model = ModleWithLoss(net, CtdetLoss(cfg)) if len(gpus) > 1: model = nn.DataParallel(model, device_ids=gpus).to(device) else: model = model.to(device) step = 0 best = 1e10 log_loss_stats = ['loss', 'hm_loss', 'wh_loss'] if cfg.reg_offset: log_loss_stats += ['off_loss'] if cfg.reg_obj: log_loss_stats += ['obj_loss'] for epoch in range(start_epoch + 1, num_epochs + 1): avg_loss_stats = {l: AverageMeter() for l in log_loss_stats} model.train() with tqdm(trainloader) as loader: for _, batch in enumerate(loader): for k in batch: if k != 'meta': batch[k] = batch[k].to(device=device, non_blocking=True) output, loss, loss_stats = model(batch) loss = loss.mean() optimizer.zero_grad() loss.backward() optimizer.step() # 设置tqdm显示信息 lr = optimizer.param_groups[0]['lr'] poststr = '' for l in avg_loss_stats: avg_loss_stats[l].update(loss_stats[l].mean().item(), batch['input'].size(0)) poststr += '{}: {:.4f}; '.format( l, avg_loss_stats[l].avg) loader.set_description('Epoch %d' % (epoch)) poststr += 'lr: {:.4f}'.format(lr) loader.set_postfix_str(poststr) step += 1 # self.lossSignal.emit(loss.item(), step) del output, loss, loss_stats # valid if step % val_step == 0: if len(cfg.gpus) > 1: val_model = model.module else: val_model = model val_model.eval() torch.cuda.empty_cache() # 随机采样 idx = np.arange(len(val_list)) idx = np.random.permutation(idx)[:sample_size] for j, id in enumerate(idx): image = cv2.imread(val_list[id]) image = self.preprocess(image, cfg.input_h, cfg.input_w, mean, std) image = image.to(device) with torch.no_grad(): output = val_model.model(image)[-1] # 画图并保存 debugger = Debugger(dataset=names, down_ratio=cfg.down_ratio) reg = output['reg'] if cfg.reg_offset else None obj = output['obj'] if cfg.reg_obj else None dets = ctdet_decode(output['hm'].sigmoid_(), output['wh'], reg=reg, obj=obj, cat_spec_wh=cfg.cat_spec_wh, K=cfg.K) dets = dets.detach().cpu().numpy().reshape( -1, dets.shape[2]) dets[:, :4] *= cfg.down_ratio image = image[0].detach().cpu().numpy().transpose( 1, 2, 0) image = np.clip(((image * std + mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][0].detach().cpu().numpy()) debugger.add_blend_img(image, pred, 'pred_hm') debugger.add_img(image, img_id='out_pred') for k in range(len(dets)): if dets[k, 4] > cfg.vis_thresh: debugger.add_coco_bbox(dets[k, :4], dets[k, -1], dets[k, 4], img_id='out_pred') debugger.save_all_imgs(debug_dir, prefix='{}.{}_'.format( step, j)) del output, image, dets # 保存模型参数 save_model(os.path.join(model_dir, 'model_best.pth'), epoch, net) model.train() logstr = 'epoch {}'.format(epoch) for k, v in avg_loss_stats.items(): logstr += ' {}: {:.4f};'.format(k, v.avg) if USE_TENSORBOARD: writer.add_scalar('train_{}'.format(k), v.avg, epoch) logger.info(logstr) # if epoch % val_step == 0: # if len(cfg.gpus) > 1: # val_model = model.module # else: # val_model = model # val_model.eval() # torch.cuda.empty_cache() # # val_loss_stats = {l: AverageMeter() for l in log_loss_stats} # # with tqdm(valloader) as loader: # for j, batch in enumerate(loader): # for k in batch: # if k != 'meta': # batch[k] = batch[k].to(device=device, non_blocking=True) # with torch.no_grad(): # output, loss, loss_stats = val_model(batch) # # poststr = '' # for l in val_loss_stats: # val_loss_stats[l].update( # loss_stats[l].mean().item(), batch['input'].size(0)) # poststr += '{}: {:.4f}; '.format(l, val_loss_stats[l].avg) # loader.set_description('Epoch %d valid' % (epoch)) # poststr += 'lr: {:.4f}'.format(lr) # loader.set_postfix_str(poststr) # # if j < sample_size: # # 将预测结果画出来保存成jpg图片 # debugger = Debugger(dataset=names, down_ratio=cfg.down_ratio) # reg = output['reg'] if cfg.reg_offset else None # obj = output['obj'] if cfg.reg_obj else None # dets = ctdet_decode( # output['hm'], output['wh'], reg=reg, obj=obj, # cat_spec_wh=cfg.cat_spec_wh, K=cfg.K) # dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) # dets[:, :, :4] *= cfg.down_ratio # dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) # dets_gt[:, :, :4] *= cfg.down_ratio # for i in range(1): # img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) # img = np.clip(((img * std + mean) * 255.), 0, 255).astype(np.uint8) # pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy()) # gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) # debugger.add_blend_img(img, pred, 'pred_hm') # debugger.add_blend_img(img, gt, 'gt_hm') # debugger.add_img(img, img_id='out_pred') # for k in range(len(dets[i])): # if dets[i, k, 4] > cfg.vis_thresh: # debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], # dets[i, k, 4], img_id='out_pred') # # debugger.add_img(img, img_id='out_gt') # for k in range(len(dets_gt[i])): # if dets_gt[i, k, 4] > cfg.vis_thresh: # debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], # dets_gt[i, k, 4], img_id='out_gt') # # debugger.save_all_imgs(debug_dir, prefix='{}.{}_'.format(epoch, j)) # del output, loss, loss_stats # model.train() # logstr = 'epoch {} valid'.format(epoch) # for k, v in val_loss_stats.items(): # logstr += ' {}: {:.4f};'.format(k, v.avg) # if USE_TENSORBOARD: # writer.add_scalar('val_{}'.format(k), v.avg, epoch) # logger.info(logstr) # if val_loss_stats['loss'].avg < best: # best = val_loss_stats['loss'].avg # save_model(os.path.join(model_dir, 'model_best.pth'), epoch, net) save_model(os.path.join(model_dir, 'model_last.pth'), epoch, net, optimizer) if epoch in cfg.lr_step: save_model( os.path.join(model_dir, 'model_{}.pth'.format(epoch)), epoch, net, optimizer) lr = cfg.lr * (0.1**(cfg.lr_step.index(epoch) + 1)) logger.info('Drop LR to {}'.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr
def debug(self, batch, output, iter_id, dataset): opt = self.opt if "pre_hm" in batch: output.update({"pre_hm": batch["pre_hm"]}) dets = generic_decode(output, K=opt.K, opt=opt) for k in dets: dets[k] = dets[k].detach().cpu().numpy() dets_gt = batch["meta"]["gt_det"] for i in range(1): debugger = Debugger(opt=opt, dataset=dataset) img = batch["image"][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * dataset.std + dataset.mean) * 255.0), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output["hm"][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch["hm"][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, "pred_hm") debugger.add_blend_img(img, gt, "gt_hm") if "pre_img" in batch: pre_img = batch["pre_img"][i].detach().cpu().numpy().transpose( 1, 2, 0) pre_img = np.clip( ((pre_img * dataset.std + dataset.mean) * 255), 0, 255).astype(np.uint8) debugger.add_img(pre_img, "pre_img_pred") debugger.add_img(pre_img, "pre_img_gt") if "pre_hm" in batch: pre_hm = debugger.gen_colormap( batch["pre_hm"][i].detach().cpu().numpy()) debugger.add_blend_img(pre_img, pre_hm, "pre_hm") debugger.add_img(img, img_id="out_pred") if "ltrb_amodal" in opt.heads: debugger.add_img(img, img_id="out_pred_amodal") debugger.add_img(img, img_id="out_gt_amodal") # Predictions for k in range(len(dets["scores"][i])): if dets["scores"][i, k] > opt.vis_thresh: debugger.add_coco_bbox( dets["bboxes"][i, k] * opt.down_ratio, dets["clses"][i, k], dets["scores"][i, k], img_id="out_pred", ) if "ltrb_amodal" in opt.heads: debugger.add_coco_bbox( dets["bboxes_amodal"][i, k] * opt.down_ratio, dets["clses"][i, k], dets["scores"][i, k], img_id="out_pred_amodal", ) if "hps" in opt.heads and int(dets["clses"][i, k]) == 0: debugger.add_coco_hp(dets["hps"][i, k] * opt.down_ratio, img_id="out_pred") if "tracking" in opt.heads: debugger.add_arrow( dets["cts"][i][k] * opt.down_ratio, dets["tracking"][i][k] * opt.down_ratio, img_id="out_pred", ) debugger.add_arrow( dets["cts"][i][k] * opt.down_ratio, dets["tracking"][i][k] * opt.down_ratio, img_id="pre_img_pred", ) # Ground truth debugger.add_img(img, img_id="out_gt") for k in range(len(dets_gt["scores"][i])): if dets_gt["scores"][i][k] > opt.vis_thresh: debugger.add_coco_bbox( dets_gt["bboxes"][i][k] * opt.down_ratio, dets_gt["clses"][i][k], dets_gt["scores"][i][k], img_id="out_gt", ) if "ltrb_amodal" in opt.heads: debugger.add_coco_bbox( dets_gt["bboxes_amodal"][i, k] * opt.down_ratio, dets_gt["clses"][i, k], dets_gt["scores"][i, k], img_id="out_gt_amodal", ) if "hps" in opt.heads and (int(dets["clses"][i, k]) == 0): debugger.add_coco_hp(dets_gt["hps"][i][k] * opt.down_ratio, img_id="out_gt") if "tracking" in opt.heads: debugger.add_arrow( dets_gt["cts"][i][k] * opt.down_ratio, dets_gt["tracking"][i][k] * opt.down_ratio, img_id="out_gt", ) debugger.add_arrow( dets_gt["cts"][i][k] * opt.down_ratio, dets_gt["tracking"][i][k] * opt.down_ratio, img_id="pre_img_gt", ) if "hm_hp" in opt.heads: pred = debugger.gen_colormap_hp( output["hm_hp"][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp( batch["hm_hp"][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, "pred_hmhp") debugger.add_blend_img(img, gt, "gt_hmhp") if "rot" in opt.heads and "dim" in opt.heads and "dep" in opt.heads: dets_gt = {k: dets_gt[k].cpu().numpy() for k in dets_gt} calib = (batch["meta"]["calib"].detach().numpy() if "calib" in batch["meta"] else None) det_pred = generic_post_process( opt, dets, batch["meta"]["c"].cpu().numpy(), batch["meta"]["s"].cpu().numpy(), output["hm"].shape[2], output["hm"].shape[3], self.opt.num_classes, calib, ) det_gt = generic_post_process( opt, dets_gt, batch["meta"]["c"].cpu().numpy(), batch["meta"]["s"].cpu().numpy(), output["hm"].shape[2], output["hm"].shape[3], self.opt.num_classes, calib, ) debugger.add_3d_detection( batch["meta"]["img_path"][i], batch["meta"]["flipped"][i], det_pred[i], calib[i], vis_thresh=opt.vis_thresh, img_id="add_pred", ) debugger.add_3d_detection( batch["meta"]["img_path"][i], batch["meta"]["flipped"][i], det_gt[i], calib[i], vis_thresh=opt.vis_thresh, img_id="add_gt", ) debugger.add_bird_views( det_pred[i], det_gt[i], vis_thresh=opt.vis_thresh, img_id="bird_pred_gt", ) if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix="{}".format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None # print(output) dets = circledet_decode(output['hm'], output['cl'], reg=reg, cat_spec_wh=opt.cat_spec_wh, K=opt.K) # print(dets) if opt.filter_boarder: output_h = self.opt.default_resolution[ 0] // self.opt.down_ratio #hard coded output_w = self.opt.default_resolution[ 1] // self.opt.down_ratio #hard coded for i in range(dets.shape[1]): cp = [0, 0] cp[0] = dets[0, i, 0] cp[1] = dets[0, i, 1] cr = dets[0, i, 2] if cp[0] - cr < 0 or cp[0] + cr > output_w: dets[0, i, 3] = 0 continue if cp[1] - cr < 0 or cp[1] + cr > output_h: dets[0, i, 3] = 0 continue dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :3] *= opt.down_ratio dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :3] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): # print('risk = %f' % dets[i, k, 3]) if dets[i, k, 3] > opt.center_thresh: debugger.add_coco_circle(dets[i, k, :3], dets[i, k, -1], dets[i, k, 3], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 3] > opt.center_thresh: debugger.add_coco_circle(dets_gt[i, k, :3], dets_gt[i, k, -1], dets_gt[i, k, 3], img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id, dataset): opt = self.opt if 'pre_hm' in batch: output.update({'pre_hm': batch['pre_hm']}) dets = fusion_decode(output, K=opt.K, opt=opt) for k in dets: dets[k] = dets[k].detach().cpu().numpy() dets_gt = batch['meta']['gt_det'] for i in range(1): debugger = Debugger(opt=opt, dataset=dataset) img = batch['image'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * dataset.std + dataset.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm', trans=self.opt.hm_transparency) debugger.add_blend_img(img, gt, 'gt_hm', trans=self.opt.hm_transparency) debugger.add_img(img, img_id='img') # show point clouds if opt.pointcloud: pc_2d = batch['pc_2d'][i].detach().cpu().numpy() pc_3d = None pc_N = batch['pc_N'][i].detach().cpu().numpy() debugger.add_img(img, img_id='pc') debugger.add_pointcloud(pc_2d, pc_N, img_id='pc') if 'pc_hm' in opt.pc_feat_lvl: channel = opt.pc_feat_channels['pc_hm'] pc_hm = debugger.gen_colormap( batch['pc_hm'][i][channel].unsqueeze( 0).detach().cpu().numpy()) debugger.add_blend_img(img, pc_hm, 'pc_hm', trans=self.opt.hm_transparency) if 'pc_dep' in opt.pc_feat_lvl: channel = opt.pc_feat_channels['pc_dep'] pc_hm = batch['pc_hm'][i][channel].unsqueeze( 0).detach().cpu().numpy() pc_dep = debugger.add_overlay_img(img, pc_hm, 'pc_dep') if 'pre_img' in batch: pre_img = batch['pre_img'][i].detach().cpu().numpy().transpose( 1, 2, 0) pre_img = np.clip( ((pre_img * dataset.std + dataset.mean) * 255), 0, 255).astype(np.uint8) debugger.add_img(pre_img, 'pre_img_pred') debugger.add_img(pre_img, 'pre_img_gt') if 'pre_hm' in batch: pre_hm = debugger.gen_colormap( batch['pre_hm'][i].detach().cpu().numpy()) debugger.add_blend_img(pre_img, pre_hm, 'pre_hm', trans=self.opt.hm_transparency) debugger.add_img(img, img_id='out_pred') if 'ltrb_amodal' in opt.heads: debugger.add_img(img, img_id='out_pred_amodal') debugger.add_img(img, img_id='out_gt_amodal') # Predictions for k in range(len(dets['scores'][i])): if dets['scores'][i, k] > opt.vis_thresh: debugger.add_coco_bbox(dets['bboxes'][i, k] * opt.down_ratio, dets['clses'][i, k], dets['scores'][i, k], img_id='out_pred') if 'ltrb_amodal' in opt.heads: debugger.add_coco_bbox(dets['bboxes_amodal'][i, k] * opt.down_ratio, dets['clses'][i, k], dets['scores'][i, k], img_id='out_pred_amodal') if 'hps' in opt.heads and int(dets['clses'][i, k]) == 0: debugger.add_coco_hp(dets['hps'][i, k] * opt.down_ratio, img_id='out_pred') if 'tracking' in opt.heads: debugger.add_arrow(dets['cts'][i][k] * opt.down_ratio, dets['tracking'][i][k] * opt.down_ratio, img_id='out_pred') debugger.add_arrow(dets['cts'][i][k] * opt.down_ratio, dets['tracking'][i][k] * opt.down_ratio, img_id='pre_img_pred') # Ground truth debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt['scores'][i])): if dets_gt['scores'][i][k] > opt.vis_thresh: if 'dep' in dets_gt.keys(): dist = dets_gt['dep'][i][k] if len(dist) > 1: dist = dist[0] else: dist = -1 debugger.add_coco_bbox(dets_gt['bboxes'][i][k] * opt.down_ratio, dets_gt['clses'][i][k], dets_gt['scores'][i][k], img_id='out_gt', dist=dist) if 'ltrb_amodal' in opt.heads: debugger.add_coco_bbox(dets_gt['bboxes_amodal'][i, k] * opt.down_ratio, dets_gt['clses'][i, k], dets_gt['scores'][i, k], img_id='out_gt_amodal') if 'hps' in opt.heads and \ (int(dets['clses'][i, k]) == 0): debugger.add_coco_hp(dets_gt['hps'][i][k] * opt.down_ratio, img_id='out_gt') if 'tracking' in opt.heads: debugger.add_arrow( dets_gt['cts'][i][k] * opt.down_ratio, dets_gt['tracking'][i][k] * opt.down_ratio, img_id='out_gt') debugger.add_arrow( dets_gt['cts'][i][k] * opt.down_ratio, dets_gt['tracking'][i][k] * opt.down_ratio, img_id='pre_img_gt') if 'hm_hp' in opt.heads: pred = debugger.gen_colormap_hp( output['hm_hp'][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp( batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp', trans=self.opt.hm_transparency) debugger.add_blend_img(img, gt, 'gt_hmhp', trans=self.opt.hm_transparency) if 'rot' in opt.heads and 'dim' in opt.heads and 'dep' in opt.heads: dets_gt = {k: dets_gt[k].cpu().numpy() for k in dets_gt} calib = batch['meta']['calib'].detach().numpy() \ if 'calib' in batch['meta'] else None det_pred = generic_post_process( opt, dets, batch['meta']['c'].cpu().numpy(), batch['meta']['s'].cpu().numpy(), output['hm'].shape[2], output['hm'].shape[3], self.opt.num_classes, calib) det_gt = generic_post_process(opt, dets_gt, batch['meta']['c'].cpu().numpy(), batch['meta']['s'].cpu().numpy(), output['hm'].shape[2], output['hm'].shape[3], self.opt.num_classes, calib, is_gt=True) debugger.add_3d_detection(batch['meta']['img_path'][i], batch['meta']['flipped'][i], det_pred[i], calib[i], vis_thresh=opt.vis_thresh, img_id='add_pred') debugger.add_3d_detection(batch['meta']['img_path'][i], batch['meta']['flipped'][i], det_gt[i], calib[i], vis_thresh=opt.vis_thresh, img_id='add_gt') pc_3d = None if opt.pointcloud: pc_3d = batch['pc_3d'].cpu().numpy() debugger.add_bird_views(det_pred[i], det_gt[i], vis_thresh=opt.vis_thresh, img_id='bird_pred_gt', pc_3d=pc_3d, show_velocity=opt.show_velocity) debugger.add_bird_views([], det_gt[i], vis_thresh=opt.vis_thresh, img_id='bird_gt', pc_3d=pc_3d, show_velocity=opt.show_velocity) if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id, dataset): opt = self.opt if 'pre_hm' in batch: output.update({'pre_hm': batch['pre_hm']}) dets = generic_decode(output, K=opt.K, opt=opt) for k in dets: dets[k] = dets[k].detach().cpu().numpy() dets_gt = batch['meta']['gt_det'] for i in range(1): debugger = Debugger(opt=opt, dataset=dataset) img = batch['image'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * dataset.std + dataset.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') if 'pre_img' in batch: pre_img = batch['pre_img'][i].detach().cpu().numpy().transpose( 1, 2, 0) pre_img = np.clip( ((pre_img * dataset.std + dataset.mean) * 255), 0, 255).astype(np.uint8) debugger.add_img(pre_img, 'pre_img_pred') debugger.add_img(pre_img, 'pre_img_gt') if 'pre_hm' in batch: pre_hm = debugger.gen_colormap( batch['pre_hm'][i].detach().cpu().numpy()) debugger.add_blend_img(pre_img, pre_hm, 'pre_hm') debugger.add_img(img, img_id='out_pred') if 'ltrb_amodal' in opt.heads: debugger.add_img(img, img_id='out_pred_amodal') debugger.add_img(img, img_id='out_gt_amodal') # Predictions for k in range(len(dets['scores'][i])): if dets['scores'][i, k] > opt.vis_thresh: debugger.add_coco_bbox(dets['bboxes'][i, k] * opt.down_ratio, dets['clses'][i, k], dets['scores'][i, k], img_id='out_pred') if 'ltrb_amodal' in opt.heads: debugger.add_coco_bbox(dets['bboxes_amodal'][i, k] * opt.down_ratio, dets['clses'][i, k], dets['scores'][i, k], img_id='out_pred_amodal') if 'hps' in opt.heads and int(dets['clses'][i, k]) == 0: debugger.add_coco_hp(dets['hps'][i, k] * opt.down_ratio, img_id='out_pred') if 'tracking' in opt.heads: debugger.add_arrow(dets['cts'][i][k] * opt.down_ratio, dets['tracking'][i][k] * opt.down_ratio, img_id='out_pred') debugger.add_arrow(dets['cts'][i][k] * opt.down_ratio, dets['tracking'][i][k] * opt.down_ratio, img_id='pre_img_pred') # Ground truth debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt['scores'][i])): if dets_gt['scores'][i][k] > opt.vis_thresh: debugger.add_coco_bbox(dets_gt['bboxes'][i][k] * opt.down_ratio, dets_gt['clses'][i][k], dets_gt['scores'][i][k], img_id='out_gt') if 'ltrb_amodal' in opt.heads: debugger.add_coco_bbox(dets_gt['bboxes_amodal'][i, k] * opt.down_ratio, dets_gt['clses'][i, k], dets_gt['scores'][i, k], img_id='out_gt_amodal') if 'hps' in opt.heads and \ (int(dets['clses'][i, k]) == 0): debugger.add_coco_hp(dets_gt['hps'][i][k] * opt.down_ratio, img_id='out_gt') if 'tracking' in opt.heads: debugger.add_arrow( dets_gt['cts'][i][k] * opt.down_ratio, dets_gt['tracking'][i][k] * opt.down_ratio, img_id='out_gt') debugger.add_arrow( dets_gt['cts'][i][k] * opt.down_ratio, dets_gt['tracking'][i][k] * opt.down_ratio, img_id='pre_img_gt') if 'hm_hp' in opt.heads: pred = debugger.gen_colormap_hp( output['hm_hp'][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp( batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp') debugger.add_blend_img(img, gt, 'gt_hmhp') if 'rot' in opt.heads and 'dim' in opt.heads and 'dep' in opt.heads: dets_gt = {k: dets_gt[k].cpu().numpy() for k in dets_gt} calib = batch['meta']['calib'].detach().numpy() \ if 'calib' in batch['meta'] else None det_pred = generic_post_process( opt, dets, batch['meta']['c'].cpu().numpy(), batch['meta']['s'].cpu().numpy(), output['hm'].shape[2], output['hm'].shape[3], self.opt.num_classes, calib) det_gt = generic_post_process(opt, dets_gt, batch['meta']['c'].cpu().numpy(), batch['meta']['s'].cpu().numpy(), output['hm'].shape[2], output['hm'].shape[3], self.opt.num_classes, calib) debugger.add_3d_detection(batch['meta']['img_path'][i], batch['meta']['flipped'][i], det_pred[i], calib[i], vis_thresh=opt.vis_thresh, img_id='add_pred') debugger.add_3d_detection(batch['meta']['img_path'][i], batch['meta']['flipped'][i], det_gt[i], calib[i], vis_thresh=opt.vis_thresh, img_id='add_gt') debugger.add_bird_views(det_pred[i], det_gt[i], vis_thresh=opt.vis_thresh, img_id='bird_pred_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def run_one_scn(demo_scn, demo_dir, opt): Detector = detector_factory[opt.task] detector = Detector(opt) basename = os.path.basename(demo_scn) basename = basename.replace('.scn', '') basename = basename.replace('.svs', '') # basename = basename.replace(' ', '-') working_dir = os.path.join(demo_dir, basename) xml_file = os.path.join(working_dir, '%s.xml' % (basename)) if os.path.exists(xml_file): return patch_2d_dir, simg_big, simg = scn_to_patchs(demo_scn, working_dir, opt) if os.path.isdir(patch_2d_dir): image_names = [] ls = os.listdir(patch_2d_dir) for file_name in sorted(ls): ext = file_name[file_name.rfind('.') + 1:].lower() if ext in image_ext: image_names.append(os.path.join(patch_2d_dir, file_name)) else: image_names = [patch_2d_dir] detect_all = None count = 1 for (image_name) in image_names: ret = detector.run(image_name) results = ret['results'] res_strs = os.path.basename(image_name).replace('.png', '').split('-x-') lv_str = res_strs[0] patch_start_x = np.int(res_strs[3]) patch_start_y = np.int(res_strs[4]) if opt.filter_boarder: output_h = opt.input_h # hard coded output_w = opt.input_w # hard coded for j in range(1, opt.num_classes + 1): for i in range(len(results[j])): cp = [0, 0] cp[0] = results[j][i][0] cp[1] = results[j][i][1] cr = results[j][i][2] if cp[0] - cr < 0 or cp[0] + cr > output_w: results[j][i][3] = 0 continue if cp[1] - cr < 0 or cp[1] + cr > output_h: results[j][i][3] = 0 continue for j in range(1, opt.num_classes + 1): for circle in results[j]: if circle[3] > opt.vis_thresh: circle_out = circle[:] circle_out[0] = circle[0] + patch_start_x circle_out[1] = circle[1] + patch_start_y if detect_all is None: detect_all = [circle] else: detect_all = np.append(detect_all, [circle], axis=0) time_str = '' for stat in time_stats: time_str = time_str + '{} {:.3f}s |'.format(stat, ret[stat]) print(' %d/%d %s' % (count, len(image_names), time_str)) count = count + 1 num_classes = 1 scales = 1 max_per_image = 2000 run_nms = True results2 = merge_outputs(num_classes, max_per_image, run_nms, detect_all) detect_all = results2[1] # detections = [] # det_clss = {} # det_clss[1] = detect_all # detections.append(det_clss) # detect_all = merge_outputs(opt, detections) if not simg_big is None: debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) debugger.add_img(simg_big, img_id='') debugger.save_all_imgs(working_dir, prefix='%s' % (basename)) # save original image json_file = os.path.join(working_dir, '%s.json' % (basename)) debugger.save_detect_all_to_json(simg_big, detect_all, json_file, opt, simg) for circle in detect_all: debugger.add_coco_circle(circle[:3], circle[-1], circle[3], img_id='') debugger.save_all_imgs(working_dir, prefix='%s_overlay' % (basename)) # save original overlay # # make open slide file # with open("/media/huoy1/48EAE4F7EAE4E264/Projects/detection/test_demo/Case 01-3_manual_good.xml") as fd: # doc = xmltodict.parse(fd.read()) try: start_x = np.int(simg.properties['openslide.bounds-x']) start_y = np.int(simg.properties['openslide.bounds-y']) width_x = np.int(simg.properties['openslide.bounds-width']) height_y = np.int(simg.properties['openslide.bounds-height']) except: start_x = 0 start_y = 0 width_x = np.int(simg.properties['aperio.OriginalWidth']) height_y = np.int(simg.properties['aperio.OriginalHeight']) down_rate = simg.level_downsamples[opt.lv] detect_json = [] doc_out = {} doc_out['Annotations'] = {} doc_out['Annotations']['@MicronsPerPixel'] = simg.properties[ 'openslide.mpp-x'] doc_out['Annotations']['@Level'] = opt.lv doc_out['Annotations']['@DownRate'] = down_rate doc_out['Annotations']['@start_x'] = start_x doc_out['Annotations']['@start_y'] = start_y doc_out['Annotations']['@width_x'] = width_x doc_out['Annotations']['@height_y'] = height_y if 'leica.device-model' in simg.properties: doc_out['Annotations']['@Device'] = 'leica.device-model' else: doc_out['Annotations']['@Device'] = 'aperio.Filename' doc_out['Annotations']['Annotation'] = {} doc_out['Annotations']['Annotation']['@Id'] = '1' doc_out['Annotations']['Annotation']['@Name'] = '' doc_out['Annotations']['Annotation']['@ReadOnly'] = '0' doc_out['Annotations']['Annotation']['@LineColorReadOnly'] = '0' doc_out['Annotations']['Annotation']['@Incremental'] = '0' doc_out['Annotations']['Annotation']['@Type'] = '4' doc_out['Annotations']['Annotation']['@LineColor'] = '65280' doc_out['Annotations']['Annotation']['@Visible'] = '1' doc_out['Annotations']['Annotation']['@Selected'] = '1' doc_out['Annotations']['Annotation']['@MarkupImagePath'] = '' doc_out['Annotations']['Annotation']['@MacroName'] = '' doc_out['Annotations']['Annotation']['Attributes'] = {} doc_out['Annotations']['Annotation']['Attributes']['Attribute'] = {} doc_out['Annotations']['Annotation']['Attributes']['Attribute'][ '@Name'] = 'glomerulus' doc_out['Annotations']['Annotation']['Attributes']['Attribute'][ '@Id'] = '0' doc_out['Annotations']['Annotation']['Attributes']['Attribute'][ '@Value'] = '' doc_out['Annotations']['Annotation']['Plots'] = None doc_out['Annotations']['Annotation']['Regions'] = {} doc_out['Annotations']['Annotation']['Regions'][ 'RegionAttributeHeaders'] = {} doc_out['Annotations']['Annotation']['Regions']['AttributeHeader'] = [] doc_out['Annotations']['Annotation']['Regions']['Region'] = [] for di in range(len(detect_all)): detect_one = detect_all[di] detect_dict = {} detect_dict['@Id'] = str(di + 1) detect_dict['@Type'] = '2' detect_dict['@Zoom'] = '0.5' detect_dict['@ImageLocation'] = '' detect_dict['@ImageFocus'] = '-1' detect_dict['@Length'] = '2909.1' detect_dict['@Area'] = '673460.1' detect_dict['@LengthMicrons'] = '727.3' detect_dict['@AreaMicrons'] = '42091.3' detect_dict['@Text'] = ('%.3f' % detect_one[3]) detect_dict['@NegativeROA'] = '0' detect_dict['@InputRegionId'] = '0' detect_dict['@Analyze'] = '0' detect_dict['@DisplayId'] = str(di + 1) detect_dict['Attributes'] = None detect_dict['Vertices'] = '0' detect_dict['Vertices'] = {} detect_dict['Vertices']['Vertex'] = [] if 'leica.device-model' in simg.properties: #leica coord1 = {} coord1['@X'] = str(height_y - (detect_one[1] - detect_one[2]) * down_rate) coord1['@Y'] = str((detect_one[0] - detect_one[2]) * down_rate) coord1['@Z'] = '0' coord2 = {} coord2['@X'] = str( height_y - (detect_one[1] + detect_one[2]) * down_rate) # 左右 coord2['@Y'] = str( (detect_one[0] + detect_one[2]) * down_rate) # 上下 coord2['@Z'] = '0' detect_dict['Vertices']['Vertex'].append(coord1) detect_dict['Vertices']['Vertex'].append(coord2) elif 'aperio.Filename' in simg.properties: coord1 = {} coord1['@X'] = str((detect_one[0] - detect_one[2]) * down_rate) coord1['@Y'] = str((detect_one[1] - detect_one[2]) * down_rate) coord1['@Z'] = '0' coord2 = {} coord2['@X'] = str( (detect_one[0] + detect_one[2]) * down_rate) # 左右 coord2['@Y'] = str( (detect_one[1] + detect_one[2]) * down_rate) # 上下 coord2['@Z'] = '0' detect_dict['Vertices']['Vertex'].append(coord1) detect_dict['Vertices']['Vertex'].append(coord2) doc_out['Annotations']['Annotation']['Regions']['Region'].append( detect_dict) out = xmltodict.unparse(doc_out, pretty=True) with open(xml_file, 'wb') as file: file.write(out.encode('utf-8')) os.system('rm -r "%s"' % (os.path.join(working_dir, '2d_patch'))) return
def run(self, image_or_path_or_tensor, img_id, meta=None): load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0 merge_time, tot_time = 0, 0 debugger = Debugger(dataset=self.opt.dataset, ipynb=(self.opt.debug == 3), theme=self.opt.debugger_theme) start_time = time.time() pre_processed = False if isinstance(image_or_path_or_tensor, np.ndarray): image = image_or_path_or_tensor elif type(image_or_path_or_tensor) == type(''): image = cv2.imread(image_or_path_or_tensor) else: image = image_or_path_or_tensor['image'][0].numpy() pre_processed_images = image_or_path_or_tensor pre_processed = True loaded_time = time.time() load_time += (loaded_time - start_time) detections = [] for scale in self.scales: scale_start_time = time.time() if not pre_processed: images, meta = self.pre_process(image, scale, meta) else: # import pdb; pdb.set_trace() images = pre_processed_images['images'][scale][0] meta = pre_processed_images['meta'][scale] meta = {k: v.numpy()[0] for k, v in meta.items()} images = images.to(self.opt.device) torch.cuda.synchronize() pre_process_time = time.time() pre_time += pre_process_time - scale_start_time output, dets, forward_time = self.process(images, return_time=True) torch.cuda.synchronize() net_time += forward_time - pre_process_time decode_time = time.time() dec_time += decode_time - forward_time if self.opt.debug >= 2: if self.opt.task == 'car_pose_6dof': self.debug(debugger, images, dets, output, meta, scale) else: self.debug(debugger, images, dets, output, scale) dets = self.post_process(dets, meta, scale) torch.cuda.synchronize() post_process_time = time.time() post_time += post_process_time - decode_time detections.append(dets) results = self.merge_outputs(detections) torch.cuda.synchronize() end_time = time.time() merge_time += end_time - post_process_time tot_time += end_time - start_time if self.opt.debug == 4: prefix = '{}_'.format(img_id) debugger.save_all_imgs(self.opt.debug_dir, prefix=prefix) elif self.opt.debug >= 1: self.show_results(debugger, image, results) return { 'results': results, 'tot': tot_time, 'load': load_time, 'pre': pre_time, 'net': net_time, 'dec': dec_time, 'post': post_time, 'merge': merge_time }
def debug(self, batch, output, iter_id): opt = self.opt # reg = output['reg'] if opt.reg_offset else None reg = output['reg'][0:1] if opt.reg_offset else None # dets = ctdet_decode( # output['hm'], output['wh'], reg=reg, # cat_spec_wh=opt.cat_spec_wh, K=opt.K) dets = ctdet_decode(output['hm'][0:1], output['wh'][0:1], reg=reg, cat_spec_wh=opt.cat_spec_wh, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio # FIXME: change from tensor to list and then reshape # dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) # batch['meta_gt_det'] = [128, 128, 6] gt_det = batch['meta_gt_det'][0:1] gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \ np.zeros((1, 6), dtype=np.float32) dets_gt = gt_det.reshape(1, -1, dets.shape[2]) # print(batch['meta_img_id'][0:1]) dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) elif opt.debug == 5: debugger.show_all_imgs(pause=opt.pause, logger=self.logger, step=iter_id) else: debugger.show_all_imgs(pause=opt.pause, step=iter_id)
def error_bound_saliency(opt, img_id, loc=None, error_bound=0.1): os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str Dataset = dataset_factory[opt.dataset] opt = opts().update_dataset_info_and_set_heads(opt, Dataset) Detector = detector_factory[opt.task] ### simply run the detector and save the objectness heat map and the detection results split = 'val' if not opt.trainval else 'test' dataset = Dataset(opt, split) detector = Detector(opt) # use the FeatureExtractor to regester the hook to get activation value # to find the name of target_layers, see the model.named_modules() feature_extractor = FeatureExtractor(detector.model, target_layers='hm') detector.model = feature_extractor feature_extractor.eval() img_info = dataset.coco.loadImgs(ids=[img_id])[0] img_path = os.path.join(dataset.img_dir, img_info['file_name']) detector.run(img_path) ### get saliency mask ### Not due to the input image is usually resized and padding, we get the mask on the resized image ### for error, we use L1 loss. ## gradually increase the rect center on the image coor untile the error is lower the boundry debug_dir = detector.opt.debug_dir scale = 1.0 debugger = Debugger(dataset=detector.opt.dataset, ipynb=(detector.opt.debug == 3), theme=detector.opt.debugger_theme) image_org = cv2.imread(img_path) image, meta, resized_img = pre_process(detector, image_org, scale, mask=None, return_resized_img=True) _, _, h, w = image.size() down_sample_rate = h / feature_extractor.target_val.size(2) # get the loc[center_h,center_w] on the resized image and corresponding [fh,fw] on feature map if loc is None: # if loc [center_h,center_w] is not specified, use the location of the max value ind = torch.argmax(feature_extractor.target_val[0].sum(dim=0)) fh = ind // feature_extractor.target_val.size(3) fw = ind % feature_extractor.target_val.size(3) center_h = fh * down_sample_rate center_w = fw * down_sample_rate val = feature_extractor.target_val[0, :, fh, fw] print([center_h, center_w]) else: center_h, center_w = loc fh = int(center_h / down_sample_rate) fw = int(center_w / down_sample_rate) val = feature_extractor.target_val[0, :, fh, fw] loss_fn = lambda x: torch.mean(torch.pow((x - val), 2)) area_increment = np.prod(image.size()) / 1000.0 area = 0 ratio = 1.0 # w/h = 1.0 increased rect ratio error = 1e10 mask = np.zeros([h, w]) # [H,W] while (error > error_bound): print("it:{} error:{}".format(area // area_increment, error)) area += area_increment bh = np.sqrt(area / ratio) bw = area / bh mask = np.zeros([h, w]) hmin, hmax = max(int(center_h - bh / 2), 0), min(int(center_h + bh / 2) + 1, h - 1) wmin, wmax = max(int(center_w - bw / 2), 0), min(int(center_w + bw / 2) + 1, w - 1) mask[hmin:hmax, wmin:wmax] = 1 image_masked, _ = pre_process(detector, image_org, 1.0, mask) image_masked = image_masked.to(opt.device) with torch.no_grad(): feature_extractor(image_masked) error = loss_fn(feature_extractor.target_val[0, :, fh, fw]) print("it:{} error:{}".format(area // area_increment, error)) # draw the rect mask on resized_image and save rect_mask_img_save_name = 'rect_mask_{:.1f}'.format(scale) debugger.add_blend_img(resized_img, debugger.gen_colormap(mask[np.newaxis, :, :]), rect_mask_img_save_name) kernel_hmin, kernel_hmax = max( int(center_h - down_sample_rate / 2), 0), min(int(center_h + down_sample_rate / 2) + 1, h - 1) kernel_wmin, kernel_wmax = max( int(center_w - down_sample_rate / 2), 0), min(int(center_w + down_sample_rate / 2) + 1, w - 1) debugger.imgs[rect_mask_img_save_name][kernel_hmin:kernel_hmax, kernel_wmin:kernel_wmax] = [ 255, 0, 0 ] # green ## get saliency superpixel rect_img = resized_img[hmin:hmax, wmin:wmax] segments = slic(rect_img, n_segments=30) #[hmin:hmax, wmin:wmax] un_removed_superpixel = list(np.unique(segments)) rect_segment_mask = np.ones_like(segments) while (error < error_bound): # find superpixel whose removement leads to lowest error lowest_error = 1e10 lowest_error_ind = -1 for i in un_removed_superpixel: mask = np.zeros([h, w]) mask[hmin:hmax, wmin:wmax] = rect_segment_mask * (segments != i) image_masked, _ = pre_process(detector, image_org, 1.0, mask) image_masked = image_masked.to(opt.device) with torch.no_grad(): feature_extractor(image_masked) cur_error = loss_fn(feature_extractor.target_val[0, :, fh, fw]) if cur_error < lowest_error: lowest_error = cur_error lowest_error_ind = i if not lowest_error < error_bound: break else: un_removed_superpixel.remove(lowest_error_ind) error = lowest_error rect_segment_mask = rect_segment_mask * (segments != lowest_error_ind) print("error={} remaining super pixel:{}".format( error, len(un_removed_superpixel))) # draw the segmentation saliency mask on resized_image and save mask = np.zeros([h, w]) mask[hmin:hmax, wmin:wmax] = rect_segment_mask inp_image = resized_img * mask[:, :, np.newaxis].astype(np.uint8) debugger.add_img(inp_image, 'masked_img') mask_img_save_name = 'mask_{:.1f}'.format(scale) debugger.add_blend_img(resized_img, debugger.gen_colormap(mask[np.newaxis, :, :]), mask_img_save_name) debugger.imgs[mask_img_save_name][kernel_hmin:kernel_hmax, kernel_wmin:kernel_wmax] = [255, 0, 0] # blue debugger.save_all_imgs(debug_dir, prefix='{}'.format(opt.img_id)) opt.prefix = '{}masked'.format(opt.img_id) detector.run(inp_image) return