def demo_image(image, image_name, model, opt): s = max(image.shape[0], image.shape[1]) * 1.0 c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [opt.input_w, opt.input_h]) inp = cv2.warpAffine(image, trans_input, (opt.input_w, opt.input_h), flags=cv2.INTER_LINEAR) inp = (inp / 255. - mean) / std inp = inp.transpose(2, 0, 1)[np.newaxis, ...].astype(np.float32) inp = torch.from_numpy(inp).to(opt.device) out = model(inp)[-1] pred = get_preds(out['hm'].detach().cpu().numpy())[0] pred = transform_preds(pred, c, s, (opt.output_w, opt.output_h)) pred_3d = get_preds_3d(out['hm'].detach().cpu().numpy(), out['depth'].detach().cpu().numpy())[0] path = "D:\\CV-Project\\pytorch-pose-hg-3d\\images\\last_save\\" _, image_name = os.path.split(image_name) image_name = image_name[:-4] debugger = Debugger() debugger.add_img(image, image_name) debugger.add_point_2d(pred, (255, 0, 0), image_name) debugger.add_point_3d(pred_3d, 'b') debugger.show_all_imgs(pause=False) debugger.show_3d(image_name, path) debugger.save_img(image_name, path)
def run(self, image_or_path_or_tensor, meta=None): load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0 merge_time, tot_time = 0, 0 debugger = Debugger(dataset=self.opt.dataset, ipynb=(self.opt.debug==3), theme=self.opt.debugger_theme) start_time = time.time() pre_processed = False if isinstance(image_or_path_or_tensor, np.ndarray): image = image_or_path_or_tensor elif type(image_or_path_or_tensor) == type (''): image = cv2.imread(image_or_path_or_tensor) else: image = image_or_path_or_tensor['image'][0].numpy() pre_processed_images = image_or_path_or_tensor pre_processed = True loaded_time = time.time() load_time += (loaded_time - start_time) detections = [] for scale in self.scales: scale_start_time = time.time() if not pre_processed: images, meta = self.pre_process(image, scale, meta) else: # import pdb; pdb.set_trace() images = pre_processed_images['images'][scale][0] meta = pre_processed_images['meta'][scale] meta = {k: v.numpy()[0] for k, v in meta.items()} images = images.to(self.opt.device) torch.cuda.synchronize() pre_process_time = time.time() pre_time += pre_process_time - scale_start_time output, dets, forward_time = self.process(images, return_time=True) torch.cuda.synchronize() net_time += forward_time - pre_process_time decode_time = time.time() dec_time += decode_time - forward_time if self.opt.debug >= 2: self.debug(debugger, images, dets, output, scale) dets = self.post_process(dets, meta, scale) torch.cuda.synchronize() post_process_time = time.time() post_time += post_process_time - decode_time detections.append(dets) results = self.merge_outputs(detections) torch.cuda.synchronize() end_time = time.time() merge_time += end_time - post_process_time tot_time += end_time - start_time if self.opt.debug >= 1: self.show_results(debugger, image, results) ret = {'results': results, 'tot': tot_time, 'load': load_time, 'pre': pre_time, 'net': net_time, 'dec': dec_time, 'post': post_time, 'merge': merge_time} debugger.save_img(ret) return ret