subjects_test = ids[:, 1] series_test = ids[:, 2] ids = ids[:, 0] labels = np.load('../infos_val.npy') subjects = labels[:, -2] series = labels[:, -1] labels = labels[:, :-2] allCols = list(range(len(cols))) # ## loading prediction ### files = getLvl1ModelList() preds_val = OrderedDict() for f in files: loadPredictions(preds_val, f[0], f[1]) # validity check for m in ensemble: assert(m in preds_val) # ## train/test ### aggr = createEnsFunc(ensemble) dataTrain = aggr(preds_val) preds_val = None # switch to add subjects if addSubjectID: dataTrain = np.c_[dataTrain, subjects] np.random.seed(4234521)
subjects_test = ids[:, 1] series_test = ids[:, 2] ids = ids[:, 0] labels = np.load('../infos_val.npy') subjects = labels[:, -2] series = labels[:, -1] labels = labels[:, :-2] allCols = range(len(cols)) # ## loading prediction ### files = getLvl1ModelList() preds_val = OrderedDict() for f in files: loadPredictions(preds_val, f[0], f[1]) # validity check for m in ensemble: assert(m in preds_val) # ## train/test ### aggr = createEnsFunc(ensemble) dataTrain = aggr(preds_val) preds_val = None # switch to add subjects if addSubjectID: dataTrain = np.c_[dataTrain, subjects] np.random.seed(4234521)
###### cols = getEventNames() labels = np.load('../infos_val.npy') subjects = labels[:, -2] series = labels[:, -1] labels = labels[:, :-2] allCols = range(len(cols)) # ## loading prediction ### files = getLvl1ModelList() preds_val = OrderedDict() for f in files: loadPredictions(preds_val, f[0], f[1]) # validity check for m in ensemble: assert (m in preds_val) # ## train/test ### aggr = createEnsFunc(ensemble) dataTrain = aggr(preds_val) preds_val = None # switch to add subjects if addSubjectID: dataTrain = np.c_[dataTrain, subjects] np.random.seed(seed)
ids = np.load('../infos_test.npy') subjects_test = ids[:, 1] series_test = ids[:, 2] ids = ids[:, 0] labels = np.load('../infos_val.npy') subjects = labels[:, -2] series = labels[:, -1] labels = labels[:, :-2] allCols = list(range(len(cols))) # ## loading prediction ### files = ensemble preds_val = OrderedDict() for f in files: loadPredictions(preds_val, f, [f], lvl=2) # ## train/test ### aggr = createEnsFunc(ensemble) dataTrain = aggr(preds_val) preds_val = None # do CV aucs = [] cv = LeaveOneLabelOut(series) p = np.zeros(labels.shape) for train, test in cv: currentSeries = np.unique(series[test])[0] for m in range(len(models)): models[m].fit(dataTrain[train][::subsample], labels[train][::subsample])
ids = np.load('../infos_test.npy') subjects_test = ids[:, 1] series_test = ids[:, 2] ids = ids[:, 0] labels = np.load('../infos_val.npy') subjects = labels[:, -2] series = labels[:, -1] labels = labels[:, :-2] allCols = range(len(cols)) # ## loading prediction ### files = ensemble preds_val = OrderedDict() for f in files: loadPredictions(preds_val, f, [f], lvl=2) # ## train/test ### aggr = createEnsFunc(ensemble) dataTrain = aggr(preds_val) preds_val = None # do CV aucs = [] cv = LeaveOneLabelOut(series) p = np.zeros(labels.shape) for train,test in cv: currentSeries = np.unique(series[test])[0] for m in range(len(models)): models[m].fit(dataTrain[train][::subsample], labels[train][::subsample]) p[test] += models[m].predict_proba(dataTrain[test]) / len(mean_type)