コード例 #1
0
def detect(model, img0):
    stride = int(model.stride.max())  # model stride
    imgsz = opt.img_size
    if imgsz <= 0:  # original size
        imgsz = dynamic_resize(img0.shape)
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    img = letterbox(img0, imgsz)[0]
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    img = torch.from_numpy(img).to(device)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    pred = model(img, augment=opt.augment)[0]
    # Apply NMS
    pred = non_max_suppression_face(pred, opt.conf_thres, opt.iou_thres)[0]
    gn = torch.tensor(img0.shape)[[1, 0, 1,
                                   0]].to(device)  # normalization gain whwh
    gn_lks = torch.tensor(img0.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to(
        device)  # normalization gain landmarks
    boxes = []
    h, w, c = img0.shape
    if pred is not None:
        pred[:, :4] = scale_coords(img.shape[2:], pred[:, :4],
                                   img0.shape).round()
        pred[:, 5:15] = scale_coords_landmarks(img.shape[2:], pred[:, 5:15],
                                               img0.shape).round()
        for j in range(pred.size()[0]):
            xywh = (xyxy2xywh(pred[j, :4].view(1, 4)) / gn).view(-1)
            xywh = xywh.data.cpu().numpy()
            conf = pred[j, 4].cpu().numpy()
            landmarks = (pred[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
            class_num = pred[j, 15].cpu().numpy()
            x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
            y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
            x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
            y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
            boxes.append([x1, y1, x2 - x1, y2 - y1, conf])
            #img0 = show_results(img0, xywh, conf, landmarks, class_num)
    #cv2.imwrite('test.jpg', img0)
    return boxes
コード例 #2
0
def detect_one(model, image_path, device):
    # Load model
    img_size = 640
    conf_thres = 0.3
    iou_thres = 0.5

    orgimg = cv2.imread(image_path)  # BGR
    img0 = copy.deepcopy(orgimg)
    assert orgimg is not None, 'Image Not Found ' + image_path
    h0, w0 = orgimg.shape[:2]  # orig hw
    r = img_size / max(h0, w0)  # resize image to img_size
    if r != 1:  # always resize down, only resize up if training with augmentation
        interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
        img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)),
                          interpolation=interp)

    imgsz = check_img_size(img_size, s=model.stride.max())  # check img_size

    img = letterbox(img0, new_shape=imgsz)[0]
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1).copy()  # BGR to RGB, to 3x416x416

    # Run inference
    t0 = time.time()

    img = torch.from_numpy(img).to(device)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    t1 = time_synchronized()
    pred = model(img)[0]

    # Apply NMS
    pred = non_max_suppression_face(pred, conf_thres, iou_thres)
    print('pred: ', pred)
    t2 = time_synchronized()

    print('img.shape: ', img.shape)
    print('orgimg.shape: ', orgimg.shape)

    # Process detections
    for i, det in enumerate(pred):  # detections per image
        gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to(
            device)  # normalization gain whwh
        gn_lks = torch.tensor(orgimg.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to(
            device)  # normalization gain landmarks
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                      orgimg.shape).round()

            # Print results
            for c in det[:, -1].unique():
                n = (det[:, -1] == c).sum()  # detections per class

            det[:, 5:15] = scale_coords_landmarks(img.shape[2:], det[:, 5:15],
                                                  orgimg.shape).round()

            for j in range(det.size()[0]):
                xywh = (xyxy2xywh(torch.tensor(det[j, :4]).view(1, 4)) /
                        gn).view(-1).tolist()
                conf = det[j, 4].cpu().numpy()
                landmarks = (det[j, 5:15].view(1, 10) /
                             gn_lks).view(-1).tolist()
                class_num = det[j, 15].cpu().numpy()

                orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)

    # Stream results
    print(f'Done. ({time.time() - t0:.3f}s)')

    cv2.imshow('orgimg', orgimg)
    if cv2.waitKey(0) == ord('q'):  # q to quit
        raise StopIteration
コード例 #3
0
                class_num = det[j, 15].cpu().numpy()
                orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)

    cv2.imwrite(cur_path + '/result.jpg', orgimg)
    print('result save in ' + cur_path + '/result.jpg')


if __name__ == '__main__':
    # ============参数================
    img_path = cur_path + "/sample.jpg"  #测试图片路径
    device = "cuda:0"
    onnx_model_path = cur_path + "/../../yolov5l-face.onnx"  #ONNX模型路径
    fp16_mode = True  #True则FP16推理

    # ============图像预处理================
    img, orgimg = img_process(img_path)  #[1,3,640,640]

    # ============TensorRT推理================
    # 初始化TensorRT引擎
    yolo_trt_model = YoloTrtModel(device, onnx_model_path, fp16_mode)

    # 耗时统计 = tensorrt推理 + torch后处理
    pred = yolo_trt_model(img.cpu().numpy())  #tensorrt推理
    pred = yolo_trt_model.after_process(pred, device)  # torch后处理

    # Apply NMS
    pred = non_max_suppression_face(pred, conf_thres=0.3, iou_thres=0.5)

    # ============可视化================
    img_vis(img, orgimg, pred, device)
コード例 #4
0
ファイル: test.py プロジェクト: qaz734913414/yolov5-face
def test(
        data,
        weights=None,
        batch_size=32,
        imgsz=640,
        conf_thres=0.001,
        iou_thres=0.6,  # for NMS
        save_json=False,
        single_cls=False,
        augment=False,
        verbose=False,
        model=None,
        dataloader=None,
        save_dir=Path(''),  # for saving images
        save_txt=False,  # for auto-labelling
        save_hybrid=False,  # for hybrid auto-labelling
        save_conf=False,  # save auto-label confidences
        plots=True,
        log_imgs=0):  # number of logged images

    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)

        # Directories
        save_dir = Path(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    is_coco = data.endswith('coco.yaml')  # is COCO dataset
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Logging
    log_imgs, wandb = min(log_imgs, 100), None  # ceil
    try:
        import wandb  # Weights & Biases
    except ImportError:
        log_imgs = 0

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img
                  ) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data[
            'val']  # path to val/test images
        dataloader = create_dataloader(path,
                                       imgsz,
                                       batch_size,
                                       model.stride.max(),
                                       opt,
                                       pad=0.5,
                                       rect=True)[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width

        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(
                img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:
                loss += compute_loss([x.float() for x in train_out], targets,
                                     model)[1][:3]  # box, obj, cls

            # Run NMS
            targets[:, 2:6] *= torch.Tensor([width, height, width,
                                             height]).to(device)  # to pixels
            lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)
                  ] if save_hybrid else []  # for autolabelling
            t = time_synchronized()
            #output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
            output = non_max_suppression_face(inf_out,
                                              conf_thres=conf_thres,
                                              iou_thres=iou_thres,
                                              labels=lb)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            pred = torch.cat((pred[:, :5], pred[:, 15:]),
                             1)  # throw landmark in thresh
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                         shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh,
                            conf) if save_conf else (cls,
                                                     *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'),
                              'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging
            if plots and len(wandb_images) < log_imgs:
                box_data = [{
                    "position": {
                        "minX": xyxy[0],
                        "minY": xyxy[1],
                        "maxX": xyxy[2],
                        "maxY": xyxy[3]
                    },
                    "class_id": int(cls),
                    "box_caption": "%s %.3f" % (names[cls], conf),
                    "scores": {
                        "class_score": conf
                    },
                    "domain": "pixel"
                } for *xyxy, conf, cls in pred.tolist()]
                boxes = {
                    "predictions": {
                        "box_data": box_data,
                        "class_labels": names
                    }
                }  # inference-space
                wandb_images.append(
                    wandb.Image(img[si], boxes=boxes, caption=path.name))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(
                    path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(p[15])] if is_coco else int(p[15]),
                        'bbox': [round(x, 3) for x in b],
                        'score':
                        round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                             shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(
                        pred, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(output), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(
            1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3
              for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print(
            'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb and wandb.run:
            wandb.log({"Images": wandb_images})
            wandb.log({
                "Validation": [
                    wandb.Image(str(f), caption=f.name)
                    for f in sorted(save_dir.glob('test*.jpg'))
                ]
            })

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t