def detect(model, img0): stride = int(model.stride.max()) # model stride imgsz = opt.img_size if imgsz <= 0: # original size imgsz = dynamic_resize(img0.shape) imgsz = check_img_size(imgsz, s=stride) # check img_size img = letterbox(img0, imgsz)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(device) img = img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression_face(pred, opt.conf_thres, opt.iou_thres)[0] gn = torch.tensor(img0.shape)[[1, 0, 1, 0]].to(device) # normalization gain whwh gn_lks = torch.tensor(img0.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to( device) # normalization gain landmarks boxes = [] h, w, c = img0.shape if pred is not None: pred[:, :4] = scale_coords(img.shape[2:], pred[:, :4], img0.shape).round() pred[:, 5:15] = scale_coords_landmarks(img.shape[2:], pred[:, 5:15], img0.shape).round() for j in range(pred.size()[0]): xywh = (xyxy2xywh(pred[j, :4].view(1, 4)) / gn).view(-1) xywh = xywh.data.cpu().numpy() conf = pred[j, 4].cpu().numpy() landmarks = (pred[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist() class_num = pred[j, 15].cpu().numpy() x1 = int(xywh[0] * w - 0.5 * xywh[2] * w) y1 = int(xywh[1] * h - 0.5 * xywh[3] * h) x2 = int(xywh[0] * w + 0.5 * xywh[2] * w) y2 = int(xywh[1] * h + 0.5 * xywh[3] * h) boxes.append([x1, y1, x2 - x1, y2 - y1, conf]) #img0 = show_results(img0, xywh, conf, landmarks, class_num) #cv2.imwrite('test.jpg', img0) return boxes
def detect_one(model, image_path, device): # Load model img_size = 640 conf_thres = 0.3 iou_thres = 0.5 orgimg = cv2.imread(image_path) # BGR img0 = copy.deepcopy(orgimg) assert orgimg is not None, 'Image Not Found ' + image_path h0, w0 = orgimg.shape[:2] # orig hw r = img_size / max(h0, w0) # resize image to img_size if r != 1: # always resize down, only resize up if training with augmentation interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp) imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size img = letterbox(img0, new_shape=imgsz)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416 # Run inference t0 = time.time() img = torch.from_numpy(img).to(device) img = img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img)[0] # Apply NMS pred = non_max_suppression_face(pred, conf_thres, iou_thres) print('pred: ', pred) t2 = time_synchronized() print('img.shape: ', img.shape) print('orgimg.shape: ', orgimg.shape) # Process detections for i, det in enumerate(pred): # detections per image gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to( device) # normalization gain whwh gn_lks = torch.tensor(orgimg.shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]].to( device) # normalization gain landmarks if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class det[:, 5:15] = scale_coords_landmarks(img.shape[2:], det[:, 5:15], orgimg.shape).round() for j in range(det.size()[0]): xywh = (xyxy2xywh(torch.tensor(det[j, :4]).view(1, 4)) / gn).view(-1).tolist() conf = det[j, 4].cpu().numpy() landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist() class_num = det[j, 15].cpu().numpy() orgimg = show_results(orgimg, xywh, conf, landmarks, class_num) # Stream results print(f'Done. ({time.time() - t0:.3f}s)') cv2.imshow('orgimg', orgimg) if cv2.waitKey(0) == ord('q'): # q to quit raise StopIteration
class_num = det[j, 15].cpu().numpy() orgimg = show_results(orgimg, xywh, conf, landmarks, class_num) cv2.imwrite(cur_path + '/result.jpg', orgimg) print('result save in ' + cur_path + '/result.jpg') if __name__ == '__main__': # ============参数================ img_path = cur_path + "/sample.jpg" #测试图片路径 device = "cuda:0" onnx_model_path = cur_path + "/../../yolov5l-face.onnx" #ONNX模型路径 fp16_mode = True #True则FP16推理 # ============图像预处理================ img, orgimg = img_process(img_path) #[1,3,640,640] # ============TensorRT推理================ # 初始化TensorRT引擎 yolo_trt_model = YoloTrtModel(device, onnx_model_path, fp16_mode) # 耗时统计 = tensorrt推理 + torch后处理 pred = yolo_trt_model(img.cpu().numpy()) #tensorrt推理 pred = yolo_trt_model.after_process(pred, device) # torch后处理 # Apply NMS pred = non_max_suppression_face(pred, conf_thres=0.3, iou_thres=0.5) # ============可视化================ img_vis(img, orgimg, pred, device)
def test( data, weights=None, batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, # for NMS save_json=False, single_cls=False, augment=False, verbose=False, model=None, dataloader=None, save_dir=Path(''), # for saving images save_txt=False, # for auto-labelling save_hybrid=False, # for hybrid auto-labelling save_conf=False, # save auto-label confidences plots=True, log_imgs=0): # number of logged images # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(opt.device, batch_size=batch_size) # Directories save_dir = Path( increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half = device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Configure model.eval() is_coco = data.endswith('coco.yaml') # is COCO dataset with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict check_dataset(data) # check nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Logging log_imgs, wandb = min(log_imgs, 100), None # ceil try: import wandb # Weights & Biases except ImportError: log_imgs = 0 # Dataloader if not training: img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img ) if device.type != 'cpu' else None # run once path = data['test'] if opt.task == 'test' else data[ 'val'] # path to val/test images dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, 'names') else model.module.names) } coco91class = coco80_to_coco91_class() s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width with torch.no_grad(): # Run model t = time_synchronized() inf_out, train_out = model( img, augment=augment) # inference and training outputs t0 += time_synchronized() - t # Compute loss if training: loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls # Run NMS targets[:, 2:6] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb) ] if save_hybrid else [] # for autolabelling t = time_synchronized() #output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) output = non_max_suppression_face(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) t1 += time_synchronized() - t # Statistics per image for si, pred in enumerate(output): pred = torch.cat((pred[:, :5], pred[:, 15:]), 1) # throw landmark in thresh labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path = Path(paths[si]) seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0 ]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') # W&B logging if plots and len(wandb_images) < log_imgs: box_data = [{ "position": { "minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3] }, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": { "class_score": conf }, "domain": "pixel" } for *xyxy, conf, cls in pred.tolist()] boxes = { "predictions": { "box_data": box_data, "class_labels": names } } # inference-space wandb_images.append( wandb.Image(img[si], boxes=boxes, caption=path.name)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int( path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ 'image_id': image_id, 'category_id': coco91class[int(p[15])] if is_coco else int(p[15]), 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5) }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels if plots: confusion_matrix.process_batch( pred, torch.cat((labels[:, 0:1], tbox), 1)) # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view( -1) # prediction indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view( -1) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(predn[pi, :4], tbox[ti]).max( 1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[ pi[j]] = ious[j] > iouv # iou_thres is 1xn if len( detected ) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and batch_i < 3: f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean( 1) # [P, R, [email protected], [email protected]:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%12.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple if not training: print( 'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) if wandb and wandb.run: wandb.log({"Images": wandb_images}) wandb.log({ "Validation": [ wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg')) ] }) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights ).stem if weights is not None else '' # weights anno_json = '../coco/annotations/instances_val2017.json' # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[: 2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print(f'pycocotools unable to run: {e}') # Return results if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") model.float() # for training maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t