コード例 #1
0
    def train(self,
              X_train,
              y_train,
              X_valid,
              y_valid,
              batch_size=50,
              alpha=0.001,
              lmbda=0.0001,
              num_epochs=10):

        m, n = X_train.shape
        num_batches = m // batch_size

        report = "{:3d}: training loss = {:.2f} | validation loss = {:.2f}"

        losses = []
        for epoch in range(num_epochs):
            train_loss = 0.0

            for _ in range(num_batches):
                W1, b1 = self.params['W1'], self.params['b1']
                W2, b2 = self.params['W2'], self.params['b2']

                # select a random mini-batch
                batch_idx = np.random.choice(m, batch_size, replace=False)
                X_batch, y_batch = X_train[batch_idx], y_train[batch_idx]

                # train on mini-batch
                data_loss, gradient = self.train_step(X_batch, y_batch)
                reg_loss = 0.5 * (np.sum(W1**2) + np.sum(W2**2))
                train_loss += (data_loss + lmbda * reg_loss)
                losses.append(data_loss + lmbda * reg_loss)

                # regularization
                gradient['W1'] += lmbda * W1
                gradient['W2'] += lmbda * W2

                # update parameters
                for p in self.params:
                    self.params[p] = self.params[p] - alpha * gradient[p]

            # report training loss and validation loss
            train_loss /= num_batches
            valid_loss = softmax_loss(self.forward(X_valid),
                                      y_valid,
                                      mode='test')
            print(report.format(epoch + 1, train_loss, valid_loss))

        return losses
コード例 #2
0
    def train_step(self, X, y):
        W1, b1 = self.params['W1'], self.params['b1']
        W2, b2 = self.params['W2'], self.params['b2']

        # forward step
        h_in = X @ W1 + b1  # hidden layer input
        h = np.maximum(0, h_in)  # hidden layer output (using ReLU)
        scores = h @ W2 + b2  # neural net output
        #print("scores values is {} ".format(scores))
        # compute loss
        loss, dscores = softmax_loss(scores, y)

        # backward step
        db2 = dscores.sum(axis=0)
        dW2 = h.T @ dscores

        dh = dscores @ W2.T
        dh[h_in < 0] = 0.0
        db1 = dh.sum(axis=0)
        dW1 = X.T @ dh

        gradient = {'W1': dW1, 'b1': db1, 'W2': dW2, 'b2': db2}

        return loss, gradient
コード例 #3
0
ファイル: train_multi_gpu.py プロジェクト: pbdahzou/CosFace
def main(args):

    #network = importlib.import_module(args.model_def)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Write arguments to a text file
    utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)

    train_set = utils.get_dataset(args.data_dir)
    #train_set = facenet.dataset_from_list2(args.data_dir,'dataset/casia_maxpy_mtcnnpy_182',error_classes=[],drop_key='AsianStarCropBig_YES')
    nrof_classes = len(train_set)
    print('nrof_classes: ', nrof_classes)
    image_list, label_list = utils.get_image_paths_and_labels(train_set)
    image_list = np.array(image_list)
    label_list = np.array(label_list, dtype=np.int32)

    dataset_size = len(image_list)
    single_batch_size = args.people_per_batch * args.images_per_person
    indices = range(dataset_size)
    np.random.shuffle(indices)

    def _sample_people_softmax(x):
        global softmax_ind
        if softmax_ind >= dataset_size:
            np.random.shuffle(indices)
            softmax_ind = 0
        true_num_batch = min(single_batch_size, dataset_size - softmax_ind)

        sample_paths = image_list[indices[softmax_ind:softmax_ind +
                                          true_num_batch]]
        sample_labels = label_list[indices[softmax_ind:softmax_ind +
                                           true_num_batch]]

        softmax_ind += true_num_batch

        return (np.array(sample_paths), np.array(sample_labels,
                                                 dtype=np.int32))

    def _sample_people(x):
        '''We sample people based on tf.data, where we can use transform and prefetch.

        '''

        image_paths, num_per_class = sample_people(
            train_set, args.people_per_batch * (args.num_gpus - 1),
            args.images_per_person)
        labels = []
        for i in range(len(num_per_class)):
            labels.extend([i] * num_per_class[i])
        return (np.array(image_paths), np.array(labels, dtype=np.int32))

    def _parse_function(filename, label):
        file_contents = tf.read_file(filename)
        image = tf.image.decode_image(file_contents, channels=3)
        #image = tf.image.decode_jpeg(file_contents, channels=3)
        print(image.shape)

        if args.random_crop:
            print('use random crop')
            image = tf.random_crop(image,
                                   [args.image_size, args.image_size, 3])
        else:
            print('Not use random crop')
            #image.set_shape((args.image_size, args.image_size, 3))
            image.set_shape((None, None, 3))
            image = tf.image.resize_images(image,
                                           size=(args.image_height,
                                                 args.image_width))
            #print(image.shape)
        if args.random_flip:
            image = tf.image.random_flip_left_right(image)

        #pylint: disable=no-member
        #image.set_shape((args.image_size, args.image_size, 3))
        image.set_shape((args.image_height, args.image_width, 3))
        if debug:
            image = tf.cast(image, tf.float32)
        else:
            image = tf.image.per_image_standardization(image)
        return image, label

    #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp',keys=['MultiPics'])
    #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp')
    gpus = [0, 1]
    #gpus = [0]

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False, name='global_step')

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')

        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        #the image is generated by sequence
        with tf.device("/cpu:0"):

            softmax_dataset = tf_data.Dataset.range(args.epoch_size *
                                                    args.max_nrof_epochs * 100)
            softmax_dataset = softmax_dataset.map(lambda x: tf.py_func(
                _sample_people_softmax, [x], [tf.string, tf.int32]))
            softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices)
            softmax_dataset = softmax_dataset.map(_parse_function,
                                                  num_threads=8,
                                                  output_buffer_size=2000)
            softmax_dataset = softmax_dataset.batch(args.num_gpus *
                                                    single_batch_size)
            softmax_iterator = softmax_dataset.make_initializable_iterator()
            softmax_next_element = softmax_iterator.get_next()
            softmax_next_element[0].set_shape(
                (args.num_gpus * single_batch_size, args.image_height,
                 args.image_width, 3))
            softmax_next_element[1].set_shape(args.num_gpus *
                                              single_batch_size)
            batch_image_split = tf.split(softmax_next_element[0],
                                         args.num_gpus)
            batch_label_split = tf.split(softmax_next_element[1],
                                         args.num_gpus)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        print('Using optimizer: {}'.format(args.optimizer))
        if args.optimizer == 'ADAGRAD':
            opt = tf.train.AdagradOptimizer(learning_rate)
        elif args.optimizer == 'MOM':
            opt = tf.train.MomentumOptimizer(learning_rate, 0.9)
        tower_losses = []
        tower_cross = []
        tower_dist = []
        tower_th = []
        for i in range(args.num_gpus):
            with tf.device("/gpu:" + str(i)):
                with tf.name_scope("tower_" + str(i)) as scope:
                    with slim.arg_scope([slim.model_variable, slim.variable],
                                        device="/cpu:0"):
                        with tf.variable_scope(
                                tf.get_variable_scope()) as var_scope:
                            reuse = False if i == 0 else True
                            #with slim.arg_scope(resnet_v2.resnet_arg_scope(args.weight_decay)):
                            #prelogits, end_points = resnet_v2.resnet_v2_50(batch_image_split[i],is_training=True,
                            #        output_stride=16,num_classes=args.embedding_size,reuse=reuse)
                            #prelogits, end_points = network.inference(batch_image_split[i], args.keep_probability,
                            #    phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size,
                            #    weight_decay=args.weight_decay, reuse=reuse)
                            if args.network == 'slim_sphere':
                                prelogits = network.infer(batch_image_split[i])
                            elif args.network == 'densenet':
                                with slim.arg_scope(
                                        densenet.densenet_arg_scope(
                                            args.weight_decay)):
                                    #prelogits, endpoints = densenet.densenet_small(batch_image_split[i],num_classes=args.embedding_size,is_training=True,reuse=reuse)
                                    prelogits, endpoints = densenet.densenet_small_middle(
                                        batch_image_split[i],
                                        num_classes=args.embedding_size,
                                        is_training=True,
                                        reuse=reuse)
                                    prelogits = tf.squeeze(prelogits,
                                                           axis=[1, 2])

                            #prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn')
                            if args.loss_type == 'softmax':
                                cross_entropy_mean = utils.softmax_loss(
                                    prelogits, batch_label_split[i],
                                    len(train_set), args.weight_decay, reuse)
                                regularization_losses = tf.get_collection(
                                    tf.GraphKeys.REGULARIZATION_LOSSES)
                                tower_cross.append(cross_entropy_mean)
                                #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses)
                                loss = cross_entropy_mean + tf.add_n(
                                    regularization_losses)
                                tower_dist.append(0)
                                tower_cross.append(cross_entropy_mean)
                                tower_th.append(0)
                                tower_losses.append(loss)
                            elif args.loss_type == 'scatter' or args.loss_type == 'coco':
                                label_reshape = tf.reshape(
                                    batch_label_split[i], [single_batch_size])
                                label_reshape = tf.cast(
                                    label_reshape, tf.int64)
                                if args.loss_type == 'scatter':
                                    scatter_loss, _ = utils.weight_scatter_speed(
                                        prelogits,
                                        label_reshape,
                                        len(train_set),
                                        reuse,
                                        weight=args.weight,
                                        scale=args.scale)
                                else:
                                    scatter_loss, _ = utils.coco_loss(
                                        prelogits,
                                        label_reshape,
                                        len(train_set),
                                        reuse,
                                        alpha=args.alpha,
                                        scale=args.scale)
                                regularization_losses = tf.get_collection(
                                    tf.GraphKeys.REGULARIZATION_LOSSES)
                                loss = scatter_loss[
                                    'loss_total'] + args.weight_decay * tf.add_n(
                                        regularization_losses)
                                tower_dist.append(scatter_loss['loss_dist'])
                                tower_cross.append(0)
                                tower_th.append(scatter_loss['loss_th'])

                                tower_losses.append(loss)

                            #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss')
                            tf.get_variable_scope().reuse_variables()
        total_loss = tf.reduce_mean(tower_losses)
        total_cross = tf.reduce_mean(tower_cross)
        total_dist = tf.reduce_mean(tower_dist)
        total_th = tf.reduce_mean(tower_th)
        losses = {}
        losses['total_loss'] = total_loss
        losses['total_cross'] = total_cross
        losses['total_dist'] = total_dist
        losses['total_th'] = total_th
        debug_info = {}
        debug_info['logits'] = prelogits
        #debug_info['end_points'] = end_points
        debug_info['batch_image_split'] = batch_image_split
        debug_info['batch_label_split'] = batch_label_split
        #debug_info['endpoints'] = endpoints

        grads = opt.compute_gradients(total_loss,
                                      tf.trainable_variables(),
                                      colocate_gradients_with_ops=True)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = tf.group(apply_gradient_op)

        save_vars = [
            var for var in tf.global_variables()
            if 'Adagrad' not in var.name and 'global_step' not in var.name
        ]
        check_nan = tf.add_check_numerics_ops()
        debug_info['check_nan'] = check_nan

        #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)
        saver = tf.train.Saver(save_vars, max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                allow_soft_placement=True))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        #sess.run(iterator.initializer)
        sess.run(softmax_iterator.initializer)

        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():
            #pdb.set_trace()

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size
                if debug:
                    debug_train(args, sess, train_set, epoch,
                                image_batch_gather, enqueue_op,
                                batch_size_placeholder, image_batch_split,
                                image_paths_split, num_per_class_split,
                                image_paths_placeholder,
                                image_paths_split_placeholder,
                                labels_placeholder, labels_batch,
                                num_per_class_placeholder,
                                num_per_class_split_placeholder, len(gpus))
                # Train for one epoch
                train(args, sess, epoch, len(gpus), debug_info,
                      learning_rate_placeholder, phase_train_placeholder,
                      global_step, losses, train_op, summary_op,
                      summary_writer, args.learning_rate_schedule_file)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)

                # Evaluate on LFW
    return model_dir
コード例 #4
0
ファイル: train.py プロジェクト: zgq91/tensorflow-practice
def main(args):

    #network = importlib.import_module(args.model_def)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Write arguments to a text file
    utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)

    train_set = utils.get_dataset(args.data_dir)
    nrof_classes = len(train_set)
    print('nrof_classes: ', nrof_classes)
    image_list, label_list = utils.get_image_paths_and_labels(train_set)
    image_list = np.array(image_list)
    print('total images: {}'.format(len(image_list)))
    label_list = np.array(label_list, dtype=np.int32)

    dataset_size = len(image_list)
    data_reader = DataGenerator(image_list, label_list, args.batch_size)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False, name='global_step')

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        images_placeholder = tf.placeholder(tf.float32, [None, 112, 96, 3],
                                            name='images_placeholder')
        labels_placeholder = tf.placeholder(tf.int32, [None],
                                            name='labels_placeholder')

        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        print('Using optimizer: {}'.format(args.optimizer))
        if args.optimizer == 'ADAGRAD':
            opt = tf.train.AdagradOptimizer(learning_rate)
        elif args.optimizer == 'MOM':
            opt = tf.train.MomentumOptimizer(learning_rate, 0.9)

        if args.network == 'sphere_network':
            prelogits = network.infer(images_placeholder)
        else:
            raise Exception('Not supported network: {}'.format(args.loss_type))

        if args.loss_type == 'softmax':
            cross_entropy_mean = utils.softmax_loss(prelogits,
                                                    labels_placeholder,
                                                    len(train_set),
                                                    args.weight_decay, False)
            regularization_losses = tf.get_collection(
                tf.GraphKeys.REGULARIZATION_LOSSES)
            #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses)
            loss = cross_entropy_mean + args.weight_decay * tf.add_n(
                regularization_losses)
            #loss = cross_entropy_mean
        else:
            raise Exception('Not supported loss type: {}'.format(
                args.loss_type))

        #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss')
        losses = {}
        losses['total_loss'] = loss
        losses['softmax_loss'] = cross_entropy_mean
        debug_info = {}
        debug_info['prelogits'] = prelogits

        grads = opt.compute_gradients(loss, tf.trainable_variables())
        train_op = opt.apply_gradients(grads, global_step=global_step)

        #save_vars = [var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name]
        save_vars = tf.global_variables()

        #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)
        saver = tf.train.Saver(save_vars, max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                allow_soft_placement=True))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        with sess.as_default():
            #pdb.set_trace()

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size

                # Train for one epoch
                train(args, sess, epoch, images_placeholder,
                      labels_placeholder, data_reader, debug,
                      learning_rate_placeholder, global_step, losses, train_op,
                      args.learning_rate_schedule_file)

                # Save variables and the metagraph if it doesn't exist already
                model_dir = args.models_base_dir
                checkpoint_path = os.path.join(model_dir,
                                               'model-%s.ckpt' % 'softmax')
                saver.save(sess,
                           checkpoint_path,
                           global_step=step,
                           write_meta_graph=False)

                # Evaluate on LFW
    return model_dir
コード例 #5
0
ファイル: train_double.py プロジェクト: zhuzhenxi/aitom
def main_train(args):

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)
    # Write arguments to a text file
    utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    train_set = utils.dataset_from_list(
        args.train_data_dir, args.train_list_dir)  # class objects in a list

    #----------------------class definition-------------------------------------
    '''
    class ImageClass():
    "Stores the paths to images for a given class"
    def __init__(self, name, image_paths):
        self.name = name
        self.image_paths = image_paths
  
    def __str__(self):
        return self.name + ', ' + str(len(self.image_paths)) + ' images'
  
    def __len__(self):
        return len(self.image_paths)
    '''

    nrof_classes = len(train_set)
    print('nrof_classes: ', nrof_classes)
    image_list, label_list = utils.get_image_paths_and_labels(train_set)
    print('total images: ', len(image_list))  # label is in the form scalar.
    image_list = np.array(image_list)
    label_list = np.array(label_list, dtype=np.int32)
    dataset_size = len(image_list)
    single_batch_size = args.class_per_batch * args.images_per_class
    indices = list(range(dataset_size))
    np.random.shuffle(indices)

    def _sample_people_softmax(x):  # loading the images in batches.
        global softmax_ind
        if softmax_ind >= dataset_size:
            np.random.shuffle(indices)
            softmax_ind = 0
        true_num_batch = min(single_batch_size, dataset_size - softmax_ind)

        sample_paths = image_list[indices[softmax_ind:softmax_ind +
                                          true_num_batch]]
        sample_images = []

        for item in sample_paths:
            sample_images.append(np.load(str(item)))
            #print(item)
        #print(type(sample_paths[0]))
        sample_labels = label_list[indices[softmax_ind:softmax_ind +
                                           true_num_batch]]
        softmax_ind += true_num_batch
        return (np.expand_dims(np.array(sample_images, dtype=np.float32),
                               axis=4), np.array(sample_labels,
                                                 dtype=np.int32))

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False, name='global_step')
        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        #the image is generated by sequence
        with tf.device("/cpu:0"):

            softmax_dataset = tf.data.Dataset.range(args.epoch_size *
                                                    args.max_nrof_epochs)
            softmax_dataset = softmax_dataset.map(lambda x: tf.py_func(
                _sample_people_softmax, [x], [tf.float32, tf.int32]))
            softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices)
            softmax_dataset = softmax_dataset.batch(single_batch_size)
            softmax_iterator = softmax_dataset.make_initializable_iterator()
            softmax_next_element = softmax_iterator.get_next()
            softmax_next_element[0].set_shape(
                (single_batch_size, args.image_height, args.image_width,
                 args.image_width, 1))
            softmax_next_element[1].set_shape(single_batch_size)
            batch_image_split = softmax_next_element[0]
            # batch_image_split = tf.expand_dims(batch_image_split, axis = 4)
            batch_label_split = softmax_next_element[1]

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        print('Using optimizer: {}'.format(args.optimizer))
        if args.optimizer == 'ADAGRAD':
            opt = tf.train.AdagradOptimizer(learning_rate)
        elif args.optimizer == 'SGD':
            opt = tf.train.GradientDescentOptimizer(learning_rate)
        elif args.optimizer == 'MOM':
            opt = tf.train.MomentumOptimizer(learning_rate, 0.9)
        elif args.optimizer == 'ADAM':
            opt = tf.train.AdamOptimizer(learning_rate,
                                         beta1=0.9,
                                         beta2=0.999,
                                         epsilon=0.1)
        else:
            raise Exception("Not supported optimizer: {}".format(
                args.optimizer))

        losses = {}
        with slim.arg_scope([slim.model_variable, slim.variable],
                            device="/cpu:0"):
            with tf.variable_scope(tf.get_variable_scope()) as var_scope:
                reuse = False

                if args.network == 'sphere_network':

                    prelogits = network.infer(batch_image_split,
                                              args.embedding_size)
                else:
                    raise Exception("Not supported network: {}".format(
                        args.network))

                if args.fc_bn:
                    prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,\
                        updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn')

                if args.loss_type == 'softmax':
                    cross_entropy_mean = utils.softmax_loss(
                        prelogits, batch_label_split, len(train_set), 1.0,
                        reuse)
                    regularization_losses = tf.get_collection(
                        tf.GraphKeys.REGULARIZATION_LOSSES)
                    loss = cross_entropy_mean + args.weight_decay * tf.add_n(
                        regularization_losses)
                    print('************************' +
                          ' Computing the softmax loss')
                    losses['total_loss'] = cross_entropy_mean
                    losses['total_reg'] = args.weight_decay * tf.add_n(
                        regularization_losses)

                elif args.loss_type == 'lmcl':
                    label_reshape = tf.reshape(batch_label_split,
                                               [single_batch_size])
                    label_reshape = tf.cast(label_reshape, tf.int64)
                    coco_loss = utils.cos_loss(prelogits,
                                               label_reshape,
                                               len(train_set),
                                               reuse,
                                               alpha=args.alpha,
                                               scale=args.scale)
                    regularization_losses = tf.get_collection(
                        tf.GraphKeys.REGULARIZATION_LOSSES)
                    loss = coco_loss + args.weight_decay * tf.add_n(
                        regularization_losses)
                    print('************************' +
                          ' Computing the lmcl loss')
                    losses['total_loss'] = coco_loss
                    losses['total_reg'] = args.weight_decay * tf.add_n(
                        regularization_losses)

                elif args.loss_type == 'center':
                    # center loss
                    center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \
                        args.num_class_train)
                    regularization_losses = tf.get_collection(
                        tf.GraphKeys.REGULARIZATION_LOSSES)
                    loss = center_loss + args.weight_decay * tf.add_n(
                        regularization_losses)
                    print('************************' +
                          ' Computing the center loss')
                    losses['total_loss'] = center_loss
                    losses['total_reg'] = args.weight_decay * tf.add_n(
                        regularization_losses)

                elif args.loss_type == 'lmccl':
                    cross_entropy_mean = utils.softmax_loss(
                        prelogits, batch_label_split, len(train_set), 1.0,
                        reuse)
                    label_reshape = tf.reshape(batch_label_split,
                                               [single_batch_size])
                    label_reshape = tf.cast(label_reshape, tf.int64)
                    coco_loss = utils.cos_loss(prelogits,
                                               label_reshape,
                                               len(train_set),
                                               reuse,
                                               alpha=args.alpha,
                                               scale=args.scale)
                    center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \
                        args.num_class_train)
                    regularization_losses = tf.get_collection(
                        tf.GraphKeys.REGULARIZATION_LOSSES)
                    reg_loss = args.weight_decay * tf.add_n(
                        regularization_losses)
                    loss = coco_loss + reg_loss + args.center_weighting * center_loss + cross_entropy_mean
                    losses[
                        'total_loss_center'] = args.center_weighting * center_loss
                    losses['total_loss_lmcl'] = coco_loss
                    losses['total_loss_softmax'] = cross_entropy_mean
                    losses['total_reg'] = reg_loss

        grads = opt.compute_gradients(loss,
                                      tf.trainable_variables(),
                                      colocate_gradients_with_ops=True)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        # used for updating the centers in the center loss.
        if args.loss_type == 'lmccl' or args.loss_type == 'center':
            with tf.control_dependencies([centers_update_op]):
                with tf.control_dependencies(update_ops):
                    train_op = tf.group(apply_gradient_op)
        else:
            with tf.control_dependencies(update_ops):
                train_op = tf.group(apply_gradient_op)

        save_vars = [
            var for var in tf.global_variables()
            if 'Adagrad' not in var.name and 'global_step' not in var.name
        ]
        saver = tf.train.Saver(save_vars, max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()
        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                allow_soft_placement=True))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        #sess.run(iterator.initializer)
        sess.run(softmax_iterator.initializer)
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():
            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size
                if debug:
                    debug_train(args, sess, train_set, epoch, image_batch_gather,\
                     enqueue_op,batch_size_placeholder, image_batch_split,image_paths_split,num_per_class_split,
                            image_paths_placeholder,image_paths_split_placeholder, labels_placeholder, labels_batch,\
                             num_per_class_placeholder,num_per_class_split_placeholder,len(gpus))
                # Train for one epoch
                if args.loss_type == 'lmccl' or args.loss_type == 'center':
                    train_contain_center(args, sess, epoch,
                                         learning_rate_placeholder,
                                         phase_train_placeholder, global_step,
                                         losses, train_op, summary_op,
                                         summary_writer, '', centers_update_op)
                else:
                    train(args, sess, epoch, learning_rate_placeholder,
                          phase_train_placeholder, global_step, losses,
                          train_op, summary_op, summary_writer, '')
                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)
    return model_dir
コード例 #6
0
ファイル: demo_mnist.py プロジェクト: RuanYB/tensorflow
def main(argv=None):
    if tf.gfile.Exists(FLAGS.train_dir):
        tf.gfile.DeleteRecursively(FLAGS.train_dir)
    tf.gfile.MakeDirs(FLAGS.train_dir)

    global_step = tf.contrib.framework.get_or_create_global_step()
    save_path = os.path.join(FLAGS.train_dir, 'model_ckpt')

    #获取(image, label)batch pair
    image_batch, label_batch = inputs(data_type='train')

    #损失函数sparse_softmax_cross_entropy_with_logits要求rank_of_labels = rank_of_images - 1
    #对label_batch作扁平化处理
    label_batch = tf.reshape(label_batch, [50])

    #扩展image维度,从[batch, row, col]转换为[batch, row, col, depth=1]
    expand_image_batch = tf.expand_dims(image_batch, -1)

    input_placeholder = tf.placeholder_with_default(expand_image_batch,
                                                    shape=[None, 28, 28, 1],
                                                    name='input')

    # 构建模型
    # 第一个卷积层
    with tf.variable_scope('conv1') as scope:
        kernal = weight_variable('weights', shape=[5, 5, 1, 32])
        biases = bias_variable('biases', shape=[32])
        pre_activation = tf.nn.bias_add(conv2d(input_placeholder, kernal),
                                        biases)
        conv1 = tf.nn.relu(pre_activation, name=scope.name)

    # 第一个池化层
    pool1 = max_pool(conv1)

    # 第二个卷积层
    with tf.variable_scope('conv2') as scope:
        kernal = weight_variable('weights', shape=[5, 5, 32, 64])
        biases = bias_variable('biases', shape=[64])
        pre_activation = tf.nn.bias_add(conv2d(pool1, kernal), biases)
        conv2 = tf.nn.relu(pre_activation, name=scope.name)

    # 第二个池化层
    # 7*7*64
    pool2 = max_pool(conv2)

    # 全连接层
    with tf.variable_scope('fc1') as scope:
        weight_fc1 = weight_variable('weights', shape=[7 * 7 * 64, 1024])
        biases = bias_variable('biases', shape=[1024])
        pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
        fc1 = tf.nn.relu((tf.matmul(pool2_flat, weight_fc1) + biases),
                         name=scope.name)
        print('Tensor fc1/relu: ', fc1.name)

    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    fc1_drop = tf.nn.dropout(fc1, keep_prob, name='fc1_drop')
    print('>>Tensor dropout: ', fc1_drop.name)

    # 输出层
    with tf.variable_scope('softmax_linear') as scope:
        weight_fc2 = weight_variable('weight', shape=[1024, 10])
        biases = bias_variable('biases', shape=[10])

        softmax_output = tf.add(tf.matmul(fc1_drop, weight_fc2),
                                biases,
                                name=scope.name)
        print('>>Tensor softmax_linear/softmax_output: ', softmax_output.name)

    loss = softmax_loss(logits=softmax_output, labels=label_batch)
    print('>>Tensor loss: ', loss.name)

    accuracy = train_accuracy(softmax_output, label_batch)
    print('>>Tensor accuracy: ', accuracy.name)

    train_op = train(loss, global_step)
    print('>>Tensor train_op: ', train_op.name)

    #初始化所有参数
    init = tf.global_variables_initializer()

    with tf.Session() as sess:
        sess.run(init)
        coord = tf.train.Coordinator()
        try:
            threads = []

            for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
                threads.extend(
                    qr.create_threads(sess, coord, daemon=True, start=True))

            saver = tf.train.Saver()
            step = 1

            while step <= 20000 and not coord.should_stop():
                if step % 100 == 0:
                    # 每隔100步打印一次accuracy
                    runtime_accuracy = sess.run(accuracy,
                                                feed_dict={keep_prob: 1.0})
                    print(">>step %d, training accuracy %g" %
                          (step, runtime_accuracy))

                    # 每隔1000步保存一次模型
                    if step % 1000 == 0:
                        saver.save(sess, save_path, global_step=step)

                # 训练模型
                sess.run(train_op, feed_dict={keep_prob: 0.5})
                # 步数更新
                step += 1
        except Exception as e:
            coord.request_stop(e)
        coord.request_stop()
        coord.join(threads, stop_grace_period_secs=10)