def train(self, X_train, y_train, X_valid, y_valid, batch_size=50, alpha=0.001, lmbda=0.0001, num_epochs=10): m, n = X_train.shape num_batches = m // batch_size report = "{:3d}: training loss = {:.2f} | validation loss = {:.2f}" losses = [] for epoch in range(num_epochs): train_loss = 0.0 for _ in range(num_batches): W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] # select a random mini-batch batch_idx = np.random.choice(m, batch_size, replace=False) X_batch, y_batch = X_train[batch_idx], y_train[batch_idx] # train on mini-batch data_loss, gradient = self.train_step(X_batch, y_batch) reg_loss = 0.5 * (np.sum(W1**2) + np.sum(W2**2)) train_loss += (data_loss + lmbda * reg_loss) losses.append(data_loss + lmbda * reg_loss) # regularization gradient['W1'] += lmbda * W1 gradient['W2'] += lmbda * W2 # update parameters for p in self.params: self.params[p] = self.params[p] - alpha * gradient[p] # report training loss and validation loss train_loss /= num_batches valid_loss = softmax_loss(self.forward(X_valid), y_valid, mode='test') print(report.format(epoch + 1, train_loss, valid_loss)) return losses
def train_step(self, X, y): W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] # forward step h_in = X @ W1 + b1 # hidden layer input h = np.maximum(0, h_in) # hidden layer output (using ReLU) scores = h @ W2 + b2 # neural net output #print("scores values is {} ".format(scores)) # compute loss loss, dscores = softmax_loss(scores, y) # backward step db2 = dscores.sum(axis=0) dW2 = h.T @ dscores dh = dscores @ W2.T dh[h_in < 0] = 0.0 db1 = dh.sum(axis=0) dW1 = X.T @ dh gradient = {'W1': dW1, 'b1': db1, 'W2': dW2, 'b2': db2} return loss, gradient
def main(args): #network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_dir) #train_set = facenet.dataset_from_list2(args.data_dir,'dataset/casia_maxpy_mtcnnpy_182',error_classes=[],drop_key='AsianStarCropBig_YES') nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) image_list = np.array(image_list) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) single_batch_size = args.people_per_batch * args.images_per_person indices = range(dataset_size) np.random.shuffle(indices) def _sample_people_softmax(x): global softmax_ind if softmax_ind >= dataset_size: np.random.shuffle(indices) softmax_ind = 0 true_num_batch = min(single_batch_size, dataset_size - softmax_ind) sample_paths = image_list[indices[softmax_ind:softmax_ind + true_num_batch]] sample_labels = label_list[indices[softmax_ind:softmax_ind + true_num_batch]] softmax_ind += true_num_batch return (np.array(sample_paths), np.array(sample_labels, dtype=np.int32)) def _sample_people(x): '''We sample people based on tf.data, where we can use transform and prefetch. ''' image_paths, num_per_class = sample_people( train_set, args.people_per_batch * (args.num_gpus - 1), args.images_per_person) labels = [] for i in range(len(num_per_class)): labels.extend([i] * num_per_class[i]) return (np.array(image_paths), np.array(labels, dtype=np.int32)) def _parse_function(filename, label): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) #image = tf.image.decode_jpeg(file_contents, channels=3) print(image.shape) if args.random_crop: print('use random crop') image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: print('Not use random crop') #image.set_shape((args.image_size, args.image_size, 3)) image.set_shape((None, None, 3)) image = tf.image.resize_images(image, size=(args.image_height, args.image_width)) #print(image.shape) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member #image.set_shape((args.image_size, args.image_size, 3)) image.set_shape((args.image_height, args.image_width, 3)) if debug: image = tf.cast(image, tf.float32) else: image = tf.image.per_image_standardization(image) return image, label #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp',keys=['MultiPics']) #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp') gpus = [0, 1] #gpus = [0] print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #the image is generated by sequence with tf.device("/cpu:0"): softmax_dataset = tf_data.Dataset.range(args.epoch_size * args.max_nrof_epochs * 100) softmax_dataset = softmax_dataset.map(lambda x: tf.py_func( _sample_people_softmax, [x], [tf.string, tf.int32])) softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices) softmax_dataset = softmax_dataset.map(_parse_function, num_threads=8, output_buffer_size=2000) softmax_dataset = softmax_dataset.batch(args.num_gpus * single_batch_size) softmax_iterator = softmax_dataset.make_initializable_iterator() softmax_next_element = softmax_iterator.get_next() softmax_next_element[0].set_shape( (args.num_gpus * single_batch_size, args.image_height, args.image_width, 3)) softmax_next_element[1].set_shape(args.num_gpus * single_batch_size) batch_image_split = tf.split(softmax_next_element[0], args.num_gpus) batch_label_split = tf.split(softmax_next_element[1], args.num_gpus) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) tower_losses = [] tower_cross = [] tower_dist = [] tower_th = [] for i in range(args.num_gpus): with tf.device("/gpu:" + str(i)): with tf.name_scope("tower_" + str(i)) as scope: with slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0"): with tf.variable_scope( tf.get_variable_scope()) as var_scope: reuse = False if i == 0 else True #with slim.arg_scope(resnet_v2.resnet_arg_scope(args.weight_decay)): #prelogits, end_points = resnet_v2.resnet_v2_50(batch_image_split[i],is_training=True, # output_stride=16,num_classes=args.embedding_size,reuse=reuse) #prelogits, end_points = network.inference(batch_image_split[i], args.keep_probability, # phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, # weight_decay=args.weight_decay, reuse=reuse) if args.network == 'slim_sphere': prelogits = network.infer(batch_image_split[i]) elif args.network == 'densenet': with slim.arg_scope( densenet.densenet_arg_scope( args.weight_decay)): #prelogits, endpoints = densenet.densenet_small(batch_image_split[i],num_classes=args.embedding_size,is_training=True,reuse=reuse) prelogits, endpoints = densenet.densenet_small_middle( batch_image_split[i], num_classes=args.embedding_size, is_training=True, reuse=reuse) prelogits = tf.squeeze(prelogits, axis=[1, 2]) #prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn') if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split[i], len(train_set), args.weight_decay, reuse) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) tower_cross.append(cross_entropy_mean) #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses) loss = cross_entropy_mean + tf.add_n( regularization_losses) tower_dist.append(0) tower_cross.append(cross_entropy_mean) tower_th.append(0) tower_losses.append(loss) elif args.loss_type == 'scatter' or args.loss_type == 'coco': label_reshape = tf.reshape( batch_label_split[i], [single_batch_size]) label_reshape = tf.cast( label_reshape, tf.int64) if args.loss_type == 'scatter': scatter_loss, _ = utils.weight_scatter_speed( prelogits, label_reshape, len(train_set), reuse, weight=args.weight, scale=args.scale) else: scatter_loss, _ = utils.coco_loss( prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = scatter_loss[ 'loss_total'] + args.weight_decay * tf.add_n( regularization_losses) tower_dist.append(scatter_loss['loss_dist']) tower_cross.append(0) tower_th.append(scatter_loss['loss_th']) tower_losses.append(loss) #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') tf.get_variable_scope().reuse_variables() total_loss = tf.reduce_mean(tower_losses) total_cross = tf.reduce_mean(tower_cross) total_dist = tf.reduce_mean(tower_dist) total_th = tf.reduce_mean(tower_th) losses = {} losses['total_loss'] = total_loss losses['total_cross'] = total_cross losses['total_dist'] = total_dist losses['total_th'] = total_th debug_info = {} debug_info['logits'] = prelogits #debug_info['end_points'] = end_points debug_info['batch_image_split'] = batch_image_split debug_info['batch_label_split'] = batch_label_split #debug_info['endpoints'] = endpoints grads = opt.compute_gradients(total_loss, tf.trainable_variables(), colocate_gradients_with_ops=True) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) save_vars = [ var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name ] check_nan = tf.add_check_numerics_ops() debug_info['check_nan'] = check_nan #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #sess.run(iterator.initializer) sess.run(softmax_iterator.initializer) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): #pdb.set_trace() if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size if debug: debug_train(args, sess, train_set, epoch, image_batch_gather, enqueue_op, batch_size_placeholder, image_batch_split, image_paths_split, num_per_class_split, image_paths_placeholder, image_paths_split_placeholder, labels_placeholder, labels_batch, num_per_class_placeholder, num_per_class_split_placeholder, len(gpus)) # Train for one epoch train(args, sess, epoch, len(gpus), debug_info, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW return model_dir
def main(args): #network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_dir) nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) image_list = np.array(image_list) print('total images: {}'.format(len(image_list))) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) data_reader = DataGenerator(image_list, label_list, args.batch_size) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') images_placeholder = tf.placeholder(tf.float32, [None, 112, 96, 3], name='images_placeholder') labels_placeholder = tf.placeholder(tf.int32, [None], name='labels_placeholder') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) if args.network == 'sphere_network': prelogits = network.infer(images_placeholder) else: raise Exception('Not supported network: {}'.format(args.loss_type)) if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss(prelogits, labels_placeholder, len(train_set), args.weight_decay, False) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses) loss = cross_entropy_mean + args.weight_decay * tf.add_n( regularization_losses) #loss = cross_entropy_mean else: raise Exception('Not supported loss type: {}'.format( args.loss_type)) #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') losses = {} losses['total_loss'] = loss losses['softmax_loss'] = cross_entropy_mean debug_info = {} debug_info['prelogits'] = prelogits grads = opt.compute_gradients(loss, tf.trainable_variables()) train_op = opt.apply_gradients(grads, global_step=global_step) #save_vars = [var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name] save_vars = tf.global_variables() #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) with sess.as_default(): #pdb.set_trace() if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, images_placeholder, labels_placeholder, data_reader, debug, learning_rate_placeholder, global_step, losses, train_op, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already model_dir = args.models_base_dir checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % 'softmax') saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) # Evaluate on LFW return model_dir
def main_train(args): subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.dataset_from_list( args.train_data_dir, args.train_list_dir) # class objects in a list #----------------------class definition------------------------------------- ''' class ImageClass(): "Stores the paths to images for a given class" def __init__(self, name, image_paths): self.name = name self.image_paths = image_paths def __str__(self): return self.name + ', ' + str(len(self.image_paths)) + ' images' def __len__(self): return len(self.image_paths) ''' nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) print('total images: ', len(image_list)) # label is in the form scalar. image_list = np.array(image_list) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) single_batch_size = args.class_per_batch * args.images_per_class indices = list(range(dataset_size)) np.random.shuffle(indices) def _sample_people_softmax(x): # loading the images in batches. global softmax_ind if softmax_ind >= dataset_size: np.random.shuffle(indices) softmax_ind = 0 true_num_batch = min(single_batch_size, dataset_size - softmax_ind) sample_paths = image_list[indices[softmax_ind:softmax_ind + true_num_batch]] sample_images = [] for item in sample_paths: sample_images.append(np.load(str(item))) #print(item) #print(type(sample_paths[0])) sample_labels = label_list[indices[softmax_ind:softmax_ind + true_num_batch]] softmax_ind += true_num_batch return (np.expand_dims(np.array(sample_images, dtype=np.float32), axis=4), np.array(sample_labels, dtype=np.int32)) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #the image is generated by sequence with tf.device("/cpu:0"): softmax_dataset = tf.data.Dataset.range(args.epoch_size * args.max_nrof_epochs) softmax_dataset = softmax_dataset.map(lambda x: tf.py_func( _sample_people_softmax, [x], [tf.float32, tf.int32])) softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices) softmax_dataset = softmax_dataset.batch(single_batch_size) softmax_iterator = softmax_dataset.make_initializable_iterator() softmax_next_element = softmax_iterator.get_next() softmax_next_element[0].set_shape( (single_batch_size, args.image_height, args.image_width, args.image_width, 1)) softmax_next_element[1].set_shape(single_batch_size) batch_image_split = softmax_next_element[0] # batch_image_split = tf.expand_dims(batch_image_split, axis = 4) batch_label_split = softmax_next_element[1] learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'SGD': opt = tf.train.GradientDescentOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) elif args.optimizer == 'ADAM': opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) else: raise Exception("Not supported optimizer: {}".format( args.optimizer)) losses = {} with slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0"): with tf.variable_scope(tf.get_variable_scope()) as var_scope: reuse = False if args.network == 'sphere_network': prelogits = network.infer(batch_image_split, args.embedding_size) else: raise Exception("Not supported network: {}".format( args.network)) if args.fc_bn: prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,\ updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn') if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split, len(train_set), 1.0, reuse) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = cross_entropy_mean + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the softmax loss') losses['total_loss'] = cross_entropy_mean losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'lmcl': label_reshape = tf.reshape(batch_label_split, [single_batch_size]) label_reshape = tf.cast(label_reshape, tf.int64) coco_loss = utils.cos_loss(prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = coco_loss + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the lmcl loss') losses['total_loss'] = coco_loss losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'center': # center loss center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \ args.num_class_train) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = center_loss + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the center loss') losses['total_loss'] = center_loss losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'lmccl': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split, len(train_set), 1.0, reuse) label_reshape = tf.reshape(batch_label_split, [single_batch_size]) label_reshape = tf.cast(label_reshape, tf.int64) coco_loss = utils.cos_loss(prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \ args.num_class_train) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) reg_loss = args.weight_decay * tf.add_n( regularization_losses) loss = coco_loss + reg_loss + args.center_weighting * center_loss + cross_entropy_mean losses[ 'total_loss_center'] = args.center_weighting * center_loss losses['total_loss_lmcl'] = coco_loss losses['total_loss_softmax'] = cross_entropy_mean losses['total_reg'] = reg_loss grads = opt.compute_gradients(loss, tf.trainable_variables(), colocate_gradients_with_ops=True) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # used for updating the centers in the center loss. if args.loss_type == 'lmccl' or args.loss_type == 'center': with tf.control_dependencies([centers_update_op]): with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) else: with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) save_vars = [ var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name ] saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #sess.run(iterator.initializer) sess.run(softmax_iterator.initializer) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size if debug: debug_train(args, sess, train_set, epoch, image_batch_gather,\ enqueue_op,batch_size_placeholder, image_batch_split,image_paths_split,num_per_class_split, image_paths_placeholder,image_paths_split_placeholder, labels_placeholder, labels_batch,\ num_per_class_placeholder,num_per_class_split_placeholder,len(gpus)) # Train for one epoch if args.loss_type == 'lmccl' or args.loss_type == 'center': train_contain_center(args, sess, epoch, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, '', centers_update_op) else: train(args, sess, epoch, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, '') # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir
def main(argv=None): if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) global_step = tf.contrib.framework.get_or_create_global_step() save_path = os.path.join(FLAGS.train_dir, 'model_ckpt') #获取(image, label)batch pair image_batch, label_batch = inputs(data_type='train') #损失函数sparse_softmax_cross_entropy_with_logits要求rank_of_labels = rank_of_images - 1 #对label_batch作扁平化处理 label_batch = tf.reshape(label_batch, [50]) #扩展image维度,从[batch, row, col]转换为[batch, row, col, depth=1] expand_image_batch = tf.expand_dims(image_batch, -1) input_placeholder = tf.placeholder_with_default(expand_image_batch, shape=[None, 28, 28, 1], name='input') # 构建模型 # 第一个卷积层 with tf.variable_scope('conv1') as scope: kernal = weight_variable('weights', shape=[5, 5, 1, 32]) biases = bias_variable('biases', shape=[32]) pre_activation = tf.nn.bias_add(conv2d(input_placeholder, kernal), biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) # 第一个池化层 pool1 = max_pool(conv1) # 第二个卷积层 with tf.variable_scope('conv2') as scope: kernal = weight_variable('weights', shape=[5, 5, 32, 64]) biases = bias_variable('biases', shape=[64]) pre_activation = tf.nn.bias_add(conv2d(pool1, kernal), biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) # 第二个池化层 # 7*7*64 pool2 = max_pool(conv2) # 全连接层 with tf.variable_scope('fc1') as scope: weight_fc1 = weight_variable('weights', shape=[7 * 7 * 64, 1024]) biases = bias_variable('biases', shape=[1024]) pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) fc1 = tf.nn.relu((tf.matmul(pool2_flat, weight_fc1) + biases), name=scope.name) print('Tensor fc1/relu: ', fc1.name) keep_prob = tf.placeholder(tf.float32, name='keep_prob') fc1_drop = tf.nn.dropout(fc1, keep_prob, name='fc1_drop') print('>>Tensor dropout: ', fc1_drop.name) # 输出层 with tf.variable_scope('softmax_linear') as scope: weight_fc2 = weight_variable('weight', shape=[1024, 10]) biases = bias_variable('biases', shape=[10]) softmax_output = tf.add(tf.matmul(fc1_drop, weight_fc2), biases, name=scope.name) print('>>Tensor softmax_linear/softmax_output: ', softmax_output.name) loss = softmax_loss(logits=softmax_output, labels=label_batch) print('>>Tensor loss: ', loss.name) accuracy = train_accuracy(softmax_output, label_batch) print('>>Tensor accuracy: ', accuracy.name) train_op = train(loss, global_step) print('>>Tensor train_op: ', train_op.name) #初始化所有参数 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord, daemon=True, start=True)) saver = tf.train.Saver() step = 1 while step <= 20000 and not coord.should_stop(): if step % 100 == 0: # 每隔100步打印一次accuracy runtime_accuracy = sess.run(accuracy, feed_dict={keep_prob: 1.0}) print(">>step %d, training accuracy %g" % (step, runtime_accuracy)) # 每隔1000步保存一次模型 if step % 1000 == 0: saver.save(sess, save_path, global_step=step) # 训练模型 sess.run(train_op, feed_dict={keep_prob: 0.5}) # 步数更新 step += 1 except Exception as e: coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10)