コード例 #1
0
ファイル: cfg_pascal.py プロジェクト: songguoli87/FLPCL
 def initialize_variances_no_Z(self, F, G):
     # Initializing co-variances
     batch_size = F.size()[0]
     div = float(self.train_size) / batch_size
     self.FF = (t(F)).mm(F).mul(div)
     self.GG = (t(G)).mm(G).mul(div)
     self.FF = symmetric_average(self.FF) # Ensuring matrix is symmetric
     self.GG = symmetric_average(self.GG) # Ensuring matrix is symmetric
コード例 #2
0
ファイル: cfg_pascal.py プロジェクト: songguoli87/FLPCL
 def update_variances_no_Z(self, F, G):
     # Updating co-variances
     batch_size = F.size()[0]
     rho = self.rho
     div = float(self.train_size) / batch_size
     one_minus_rho_times_div = (1 - rho) * div
     self.FF = add(((self.FF).mul(rho)).detach(), t(F).mm(F).mul(one_minus_rho_times_div))
     self.GG = add(((self.GG).mul(rho)).detach(), t(G).mm(G).mul(one_minus_rho_times_div))
     self.FF = symmetric_average(self.FF) # Ensuring matrix is symmetric
     self.GG = symmetric_average(self.GG) # Ensuring matrix is symmetric
コード例 #3
0
ファイル: cfg_pascal.py プロジェクト: songguoli87/FLPCL
 def update_conditional_variables(self, F, G, Z):
     # Calculating conditional variables; F_Z, G_Z, FF_Z, GG_Z  
     self.ZZ_inverse = compute_mat_pow(self.ZZ, -1, self.epsilon) # Computing inverse of Sigma_ZZ
     self.ZZ_inverse = symmetric_average(self.ZZ_inverse) # Ensuring matrix is symmetric
     self.ZZ_inverse_mul_ZF = (self.ZZ_inverse).mm(self.ZF)
     self.ZZ_inverse_mul_ZG = (self.ZZ_inverse).mm(self.ZG)
     
     self.mu_F_Z = Z.mm(self.ZZ_inverse_mul_ZF)
     self.mu_G_Z = Z.mm(self.ZZ_inverse_mul_ZG)
     
     self.F_Z = F.sub(self.mu_F_Z) # F given Z
     self.G_Z = G.sub(self.mu_G_Z) # G given Z
     self.mu_F_Z_mu_F_Z = (t(self.ZF)).mm(self.ZZ_inverse_mul_ZF)
     self.mu_G_Z_mu_G_Z = (t(self.ZG)).mm(self.ZZ_inverse_mul_ZG)
     self.mu_F_z_mu_F_Z = symmetric_average(self.mu_F_Z_mu_F_Z)
     self.mu_G_Z_mu_G_Z = symmetric_average(self.mu_G_Z_mu_G_Z)
     self.FF_Z = (self.FF).sub(self.mu_F_Z_mu_F_Z) # Sigma_FF given Z
     self.GG_Z = (self.GG).sub(self.mu_G_Z_mu_G_Z) # Sigma_GG given Z
     self.FF_Z = symmetric_average(self.FF_Z) # Ensuring matrix is symmetric
     self.GG_Z = symmetric_average(self.GG_Z) # Ensuring matrix is symmetric
コード例 #4
0
ファイル: dpcca_b.py プロジェクト: viveksck/DPCCA
                      'train',
                      cfg.feats,
                      cfg.batch_size_train,
                      train_mode=True):
 # Forward pass
 F_train = model_F(Variable(from_numpy(batch[0])))
 G_train = model_G(Variable(from_numpy(batch[1])))
 Z_train = model_Z(Variable(from_numpy(batch[2])))
 # Updating co-variances
 cfg.update_variances(F_train, G_train, Z_train)
 # Computing conditional variables and co-variances
 cfg.update_conditional_variables(F_train, G_train, Z_train)
 # Computing right side of the loss
 FF_Z_inv_half = compute_mat_pow(cfg.FF_Z, -0.5, cfg.epsilon)
 GG_Z_inv_half = compute_mat_pow(cfg.GG_Z, -0.5, cfg.epsilon)
 FF_Z_inv_half = symmetric_average(FF_Z_inv_half)
 GG_Z_inv_half = symmetric_average(GG_Z_inv_half)
 # Fixing right side of the loss
 F_pred = (cfg.F_Z).mm(FF_Z_inv_half).detach()
 G_pred = (cfg.G_Z).mm(GG_Z_inv_half).detach()
 # Computing loss
 loss_F = loss_function(cfg.F_Z, G_pred)
 loss_G = loss_function(cfg.G_Z, F_pred)
 # Checking for nan's
 if np.isnan(loss_F.data.numpy()) or np.isnan(
         loss_G.data.numpy()):
     raise SystemExit('loss is Nan')
 # Reseting gradients, performing a backward pass, and updating the weights
 optimizer_F.zero_grad()
 loss_F.backward(retain_graph=True)
 optimizer_F.step()