type=bool, default=True, metavar='B', help='mask out known values (default: True)') parser.add_argument('--colored', type=bool, default=True, metavar='B', help='uses model with color information (default: True)') # SETUP print('SETUP') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() args.device = torch.device('cuda:0') if use_cuda else torch.device('cpu') saveDir = os.path.join('../models/', args.expID) writeArgsFile(args, saveDir) torch.manual_seed(args.seed) kwargs = {} print('Seed: {:d}'.format(args.seed)) print('Device: {}'.format(args.device)) if use_cuda: print('\nCUDA') torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.benchmark = args.benchmark num_gpus = torch.cuda.device_count() kwargs = {'num_workers': num_gpus * args.workers, 'pin_memory': True} print("Number of GPUs: {:d}".format(num_gpus)) print('Workers/GPU: {:d}'.format(args.workers))
if args.resume and not args.model: print("\n=> No model to resume training. Double-check arguments!") quit() torch.manual_seed(args.seed) kwargs = {} if args.cuda: torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.benchmark = True kwargs = {'num_workers': 1, 'pin_memory': True} if not os.path.exists(args.saveDir): os.makedirs(args.saveDir) utils.writeArgsFile(args, args.saveDir) ## LOAD DATASETS print('\nDATASET INFO.') train_data = TrainDataHandler('../datasets/train/') test_data = TestDataHandler('../datasets/test/') print('Train & val. size: {} x {}'.format(len(train_data), train_data[0][0].size())) print('Test size: {} x {}'.format(len(test_data), test_data[0][0].size())) ## LOAD MODEL & SOLVER print('\nLOADING NETWORK & SOLVER.') model = MyNet() if not args.vnect else VNect()