Exemplo n.º 1
0
                    type=bool,
                    default=True,
                    metavar='B',
                    help='mask out known values (default: True)')
parser.add_argument('--colored',
                    type=bool,
                    default=True,
                    metavar='B',
                    help='uses model with color information (default: True)')
# SETUP
print('SETUP')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
args.device = torch.device('cuda:0') if use_cuda else torch.device('cpu')
saveDir = os.path.join('../models/', args.expID)
writeArgsFile(args, saveDir)

torch.manual_seed(args.seed)
kwargs = {}
print('Seed: {:d}'.format(args.seed))

print('Device: {}'.format(args.device))

if use_cuda:
    print('\nCUDA')
    torch.cuda.manual_seed_all(args.seed)
    torch.backends.cudnn.benchmark = args.benchmark
    num_gpus = torch.cuda.device_count()
    kwargs = {'num_workers': num_gpus * args.workers, 'pin_memory': True}
    print("Number of GPUs: {:d}".format(num_gpus))
    print('Workers/GPU: {:d}'.format(args.workers))
Exemplo n.º 2
0
if args.resume and not args.model:
    print("\n=> No model to resume training. Double-check arguments!")
    quit()

torch.manual_seed(args.seed)
kwargs = {}
if args.cuda:
    torch.cuda.manual_seed_all(args.seed)
    torch.backends.cudnn.benchmark = True
    kwargs = {'num_workers': 1, 'pin_memory': True}

if not os.path.exists(args.saveDir):
    os.makedirs(args.saveDir)

utils.writeArgsFile(args, args.saveDir)

## LOAD DATASETS
print('\nDATASET INFO.')

train_data = TrainDataHandler('../datasets/train/')
test_data = TestDataHandler('../datasets/test/')

print('Train & val. size: {} x {}'.format(len(train_data),
                                          train_data[0][0].size()))
print('Test size: {} x {}'.format(len(test_data), test_data[0][0].size()))

## LOAD MODEL & SOLVER
print('\nLOADING NETWORK & SOLVER.')

model = MyNet() if not args.vnect else VNect()