コード例 #1
0
ファイル: SmallTool.py プロジェクト: SJHBXShub/Are-you-happy
    def changeWord2index(path_word2vec=None,
                         path_word_dic=None,
                         path_save=None):
        file_word_dic = open(path_word_dic, 'r', encoding='utf-8')
        file_word2vec = open(path_word2vec, 'r', encoding='utf-8')
        not_found_word2vec = ' '.join(['0.0'] * 300)
        word2vec_list = []
        line = file_word_dic.readline()
        word2index_dic = {}
        word2vec_dic = {}
        while line:
            cur_word = line.split()[0]
            cur_index = line.strip('\n\r').split()[1]
            word2index_dic[cur_word] = cur_index
            line = file_word_dic.readline()

        line = file_word2vec.readline()
        while line:
            #print(line)
            line = line.strip('\n\r').split()
            cur_key = str(line[0])
            cur_value = ' '.join(line[1:])
            word2vec_dic[cur_key] = cur_value
            line = file_word2vec.readline()

        for cur_key in word2index_dic:
            try:
                cur_value = word2vec_dic[cur_key]
            except:
                cur_value = not_found_word2vec
                print(cur_key, word2index_dic[cur_key])
            cur_string = str(word2index_dic[cur_key]) + ' ' + cur_value
            word2vec_list.append(cur_string)
        DataUtil.save_vector(path_save, word2vec_list, 'w')
コード例 #2
0
def generate_samples(config):
    sess_config = tf.compat.v1.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    sess_config.allow_soft_placement = True

    default_graph = tf.Graph()
    with default_graph.as_default():
        sess = tf.compat.v1.Session(config=sess_config, graph=default_graph)

        logger = logging.getLogger('')
        du = DataUtil(config=config)
        du.load_vocab()

        generator = Model(config=config, graph=default_graph, sess=sess)
        generator.build_train_model()
        generator.build_generate(max_len=config.train.max_length,
                                 generate_devices=config.train.devices,
                                 optimizer=config.train.optimizer)

        generator.init_and_restore(config.train.modelFile)

        infile=config.train.src_path
        generate_batch= config.train.batch_size
        outfile=config.train.out_path

        print("begin generate the data and save the negative in %s" % outfile)
        generator.generate_and_save(du, infile, generate_batch, outfile)
        print("generate the data done!")
コード例 #3
0
def generate_samples(config):
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    sess_config.allow_soft_placement = True

    default_graph = tf.Graph()
    with default_graph.as_default():
        sess = tf.Session(config=sess_config, graph=default_graph)

        logger = logging.getLogger('')
        du = DataUtil(config=config)
        du.load_vocab(src_vocab=config.src_vocab,
                      dst_vocab=config.dst_vocab,
                      src_vocab_size=config.src_vocab_size_a,
                      dst_vocab_size=config.dst_vocab_size_b)

        generator = Model(config=config, graph=default_graph, sess=sess)
        generator.build_variational_train_model()

        generator.init_and_restore(config.train.modelFile)

        print("begin generate the data and save the negative")
        generator.generate_and_save(du,
                                    config.train.src_path,
                                    config.train.batch_size,
                                    config.train.t_domain_generated_data,
                                    direction='ab')
        generator.generate_and_save(du,
                                    config.train.dst_path,
                                    config.train.batch_size,
                                    config.train.s_domain_generated_data,
                                    direction='ba')
        print("generate the data done!")
コード例 #4
0
    def save_all_qid2question():
        # 读取配置文件
        cf = ConfigParser.ConfigParser()
        cf.read("../conf/python.conf")

        # 加载train.csv文件
        train_data = pd.read_csv('%s/train.csv' % cf.get('DEFAULT', 'origin_pt')).fillna(value="")  # [:100]
        # 加载test.csv文件
        test_data = pd.read_csv('%s/test_with_qid.csv' % cf.get('DEFAULT', 'devel_pt')).fillna(value="")  # [:100]

        # 存储索引文件
        qid2question_qid_fp = '%s/qid2question.all.qid' % cf.get('DEFAULT', 'devel_pt')
        qid2question_question_fp = '%s/qid2question.all.question' % cf.get('DEFAULT', 'devel_pt')

        # 获取qid2question
        all_qid2question = BTM.get_all_qid2question(train_data, test_data)

        all_qid = []
        all_question = []
        for qid in all_qid2question:
            all_qid.append(qid)
            all_question.append(all_qid2question[qid])

        # 存储索引
        DataUtil.save_vector(qid2question_qid_fp, all_qid, 'w')
        DataUtil.save_vector(qid2question_question_fp, all_question, 'w')
コード例 #5
0
def generate_samples(config):
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    sess_config.allow_soft_placement = True

    default_graph = tf.Graph()
    with default_graph.as_default():
        sess = tf.Session(config=sess_config, graph=default_graph)

        logger = logging.getLogger('')
        du = DataUtil(config=config)
        du.load_vocab()

        generator = Model(config=config, graph=default_graph, sess=sess)
        generator.build_train_model()
        generator.build_generate(max_len=config.train.max_length,
                                 generate_devices=config.train.devices,
                                 optimizer=config.train.optimizer)

        generator.init_and_restore(config.train.modelFile)

        infile = config.train.src_path
        outfile = config.train.out_path
        refile = [config.train.dst_path]
        generate_batch = config.train.batch_size
        print("begin generate the data and save the negative in %s" % outfile)
        generator.generate_and_save(du, infile, generate_batch, outfile)
        print("generate the data done!")
        SARI_results, BLEU_results = process_evaluation_file_multi(
            infile, outfile, refile)
        logging.info("SARI: {}, BLEU: {}".format(SARI_results, BLEU_results))
        '''
コード例 #6
0
 def rescale(online_preds_fp):
     online_preds = DataUtil.load_vector(online_preds_fp, 'float')
     print(PostProcessor.getResultMean(online_preds))
     for index in range(len(online_preds)):
         score = online_preds[index]
         score = PostProcessor.adj(score, te=0.35, tr=0.25)
         online_preds[index] = score
     print(PostProcessor.getResultMean(online_preds))
     DataUtil.save_vector(online_preds_fp + '.rescale', online_preds, 'w')
コード例 #7
0
ファイル: SmallTool.py プロジェクト: SJHBXShub/Are-you-happy
 def saveSmallWord2Vec(path_save, small_word2vec_dict):
     word2vec_list = []
     count = 0
     for key in small_word2vec_dict:
         count += 1
         if count < 20:
             print(key)
         cur_string = str(key) + ' ' + str(small_word2vec_dict[key])
         word2vec_list.append(cur_string)
     DataUtil.save_vector(path_save, word2vec_list, 'w')
コード例 #8
0
 def saveNameAndCalc(self, save_filename, mul_feature_name,
                     feature_calcpearson):
     feature_analysis_pt = self.config.get(
         'DIRECTORY', 'feature_analysis_pt') + save_filename
     merge_string = []
     for cur_feature_name, cur_feature_calc in zip(mul_feature_name,
                                                   feature_calcpearson):
         merge_string.append(
             str(cur_feature_name) + ':' + str(cur_feature_calc))
     DataUtil.save_vector(feature_analysis_pt, merge_string, 'w')
コード例 #9
0
def random_split_index_offline(config):
    question_offline_fp = config.get('DIRECTORY',
                                     'source_pt') + '/question_train_set.txt'
    question_offline = open(question_offline_fp, 'r').readlines()
    [train, valid] = DataUtil.random_split(range(len(question_offline)),
                                           [0.966, 0.034])
    train_fp = config.get('DIRECTORY', 'index_pt') + 'train_996.offline.index'
    valid_fp = config.get('DIRECTORY', 'index_pt') + 'valid_034.offline.index'
    DataUtil.save_vector(train_fp, train, 'w')
    DataUtil.save_vector(valid_fp, valid, 'w')
コード例 #10
0
def train(config):
    logger = logging.getLogger('')

    """Train a model with a config file."""
    du = DataUtil(config=config)
    du.load_vocab()

    model = Model(config=config)
    model.build_train_model()

    sess_config = tf.compat.v1.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    sess_config.allow_soft_placement = True

    with model.graph.as_default():
        saver = tf.compat.v1.train.Saver(var_list=tf.compat.v1.global_variables())
        summary_writer = tf.compat.v1.summary.FileWriter(config.train.logdir, graph=model.graph)
        # saver_partial = tf.train.Saver(var_list=[v for v in tf.trainable_variables() if 'Adam' not in v.name])

        with tf.compat.v1.Session(config=sess_config) as sess:
            # Initialize all variables.
            sess.run(tf.compat.v1.global_variables_initializer())
            try:
                # saver_partial.restore(sess, tf.train.latest_checkpoint(config.train.logdir))
                # print('Restore partial model from %s.' % config.train.logdir)
                saver.restore(sess, tf.train.latest_checkpoint(config.train.logdir))
            except:
                logger.info('Failed to reload model.')
            for epoch in range(1, config.train.num_epochs+1):
                for batch in du.get_training_batches_with_buckets():
                    start_time = time.time()
                    step = sess.run(model.global_step)
                    # Summary
                    if step % config.train.summary_freq == 0:
                        step, lr, gnorm, loss, acc, summary, _ = sess.run(
                            [model.global_step, model.learning_rate, model.grads_norm,
                             model.loss, model.acc, model.summary_op, model.train_op],
                            feed_dict={model.src_pl: batch[0], model.dst_pl: batch[1]})
                        summary_writer.add_summary(summary, global_step=step)
                    else:
                        step, lr, gnorm, loss, acc, _ = sess.run(
                            [model.global_step, model.learning_rate, model.grads_norm,
                             model.loss, model.acc, model.train_op],
                            feed_dict={model.src_pl: batch[0], model.dst_pl: batch[1]})
                    logger.info(
                        'epoch: {0}\tstep: {1}\tlr: {2:.6f}\tgnorm: {3:.4f}\tloss: {4:.4f}\tacc: {5:.4f}\ttime: {6:.4f}'.
                        format(epoch, step, lr, gnorm, loss, acc, time.time() - start_time))

                    # Save model
                    if step % config.train.save_freq == 0:
                        mp = config.train.logdir + '/model_epoch_%d_step_%d' % (epoch, step)
                        saver.save(sess, mp)
                        logger.info('Save model in %s.' % mp)
            logger.info("Finish training.")
コード例 #11
0
def random_split_dataset(config):
    all_fp = config.get('DIRECTORY',
                        'dataset_pt') + 'title_content_word.all.csv'
    all_data = open(all_fp, 'r').readlines()
    all_data = [line.strip('\n') for line in all_data]
    [train, valid] = DataUtil.random_split(all_data, [0.966, 0.034])
    train_fp = config.get('DIRECTORY',
                          'dataset_pt') + 'title_content_word.train_996.csv'
    valid_fp = config.get('DIRECTORY',
                          'dataset_pt') + 'title_content_word.valid_034.csv'
    DataUtil.save_vector(train_fp, train, 'w')
    DataUtil.save_vector(valid_fp, valid, 'w')
コード例 #12
0
    def init_from_config(self, config):
        # self.model = Model(config)
        self.model = Transformer(config, config.test.devices)
        self.model.build_test_model()

        sess_config = tf.ConfigProto()
        sess_config.gpu_options.allow_growth = True
        sess_config.allow_soft_placement = True
        self.sess = tf.Session(config=sess_config, graph=self.model.graph)
        # Restore model.
        self.model.saver.restore(
            self.sess, tf.train.latest_checkpoint(config.train.logdir))

        self.du = DataUtil(config)
コード例 #13
0
    def save_all_wordtoken(cf):
        # 加载train.csv文件
        train_data = pd.read_csv('%s/train.csv' % cf.get('DEFAULT', 'origin_pt')).fillna(value="")  # [:100]
        # 加载test.csv文件
        test_data = pd.read_csv('%s/test_with_qid.csv' % cf.get('DEFAULT', 'devel_pt')).fillna(value="")  # [:100]

        # 文件存储路径
        all_wt_fp = '%s/all.wordtoken' % cf.get('DEFAULT', 'devel_pt')

        # 获取all_wordtoken
        all_wt = BTM.get_all_wordtoken(train_data, test_data)

        # 存储
        DataUtil.save_vector(all_wt_fp, all_wt, 'w')
コード例 #14
0
    def generate_index_with_swap(self):
        """
        Generate the index file of `train_with_swap.csv`
        :return: none
        """
        train_index_fp = '%s/train_311.train.index' % self.config.get('DEFAULT', 'feature_index_pt')
        train_with_swap_index_fp = '%s/train_311.train_with_swap.index' % self.config.get('DEFAULT', 'feature_index_pt')

        train_index = DataUtil.load_vector(train_index_fp, False)
        train_index = [int(x) for x in train_index]

        offset = 404290
        train_swap_index = [x + offset for x in train_index]
        train_with_swap_index = train_index + train_swap_index
        DataUtil.save_vector(train_with_swap_index_fp, train_with_swap_index, 'w')
コード例 #15
0
def exe_train(sess, data, epoch, batch_size, hf, feature_shape, 
	train, loss, input_video, y,
	bidirectional=False, step=False,modality='rgb' ):
	np.random.shuffle(data)

	total_data = len(data)
	num_batch = int(math.ceil(total_data/batch_size))+1

	total_loss = 0.0
	for batch_idx in xrange(num_batch):

		batch_data = data[batch_idx*batch_size:min((batch_idx+1)*batch_size,total_data)]
		tic = time.time()		
		data_v,data_y = DataUtil.getOversamplingBatchVideoFeature(batch_data,hf,(10,feature_shape[1],feature_shape[2],feature_shape[3]),modality=modality)

		if bidirectional:
			flag = np.random.randint(0,2)
			if flag==1:
				data_v = data_v[:,::-1]
		data_time = time.time()-tic
		tic = time.time()
		# print('data_v mean:', np.mean(data_v),' std:', np.std(data_v))
		_, l = sess.run([train,loss],feed_dict={input_video:data_v, y:data_y})
		run_time = time.time()-tic
		total_loss += l
		print('    batch_idx:%d/%d, loss:%.5f, data_time:%.3f, run_time:%.3f' %(batch_idx+1,num_batch,l,data_time,run_time))
	total_loss = total_loss/num_batch
	return total_loss
コード例 #16
0
def generate(config, argv):
    data_name = argv[0]
    LogUtil.log('INFO', 'data_name=%s' % data_name)

    # load data set
    if 'offline' == data_name:
        # load offline valid dataset index
        valid_index_off_fp = '%s/%s.offline.index' % (config.get('DIRECTORY', 'index_pt'),
                                                      config.get('TITLE_CONTENT_CNN', 'valid_index_offline_fn'))
        valid_index_off = DataUtil.load_vector(valid_index_off_fp, 'int')
        valid_index_off = [num - 1 for num in valid_index_off]

        source_file_path = config.get('DIRECTORY', 'source_pt') + '/question_train_set.txt'
        source_data = load_raw_line_from_file(config, source_file_path, valid_index_off)
    elif 'online' == data_name:
        source_file_path = config.get('DIRECTORY', 'source_pt') + '/question_eval_set.txt'
        source_data = open(source_file_path, 'r').readlines()
    else:
        source_data = None

    feature_file_path = '%s/instance_fs_length.%s.smat' % (config.get('DIRECTORY', 'dataset_pt'), data_name)
    feature_file = open(feature_file_path, 'w')

    feature_file.write('%d %d\n' % (len(source_data), 4))
    for line in source_data:
        qid, tc, tw, dc, dw = parse_question_set(line)
        feature = list()
        feature.append(len(tc))
        feature.append(len(tw))
        feature.append(len(dc))
        feature.append(len(dw))
        Feature.save_feature(feature, feature_file)

    feature_file.close()
コード例 #17
0
ファイル: label.py プロジェクト: SJHBXShub/Are-you-happy
def saveLabel(data_set_name):
    config_fp = '../conf/featwheel.conf'
    config = ConfigParser.ConfigParser()
    config.read(config_fp)
    data = pd.read_csv('%s/%s' %
                       (config.get('DIRECTORY', 'csv_spanish_cleaning_pt'),
                        data_set_name)).fillna(value="")
    labels_pt = '%s/%s.label' % (config.get(
        'DIRECTORY', 'label_pt'), config.get('FEATURE', 'offline_rawset_name'))

    labels = []
    for index, row in data.iterrows():
        cur_label = str(row['is_duplicate'])
        labels.append(cur_label)

    DataUtil.save_vector(labels_pt, labels, 'w')
コード例 #18
0
 def __init__(self, data_dir, split):
     self.split = split
     self.data_dir = data_dir
     if split == "train":
         self.alldata = DU.load_json(
             os.path.join(data_dir, "train_data.json"))
     elif split == "test":
         self.alldata = DU.load_json(
             os.path.join(data_dir, "test_data.json"))
     else:
         print("split shoud be train or test")
         return
     self.graph_lists = []
     self.graph_labels = []
     self.n_samples = len(self.alldata)
     self._prepare()
コード例 #19
0
    def demo():
        '''
        使用样例代码
        '''
        # 读取配置文件
        cf = ConfigParser.ConfigParser()
        cf.read("../conf/python.conf")

        # 加载特征文件
        features = Feature.load("%s/feature1.demo.smat" %
                                cf.get('DEFAULT', 'feature_question_pt'))
        # 存储特征文件
        Feature.save(
            features,
            "%s/feature2.demo.smat" % cf.get('DEFAULT', 'feature_question_pt'))
        # 合并特征
        Feature.merge_col(features, features)
        # 获取<问题>特征池中的特征名
        Feature.get_feature_names_question(cf)
        # 加载索引文件
        indexs = Feature.load_index("%s/vali.demo.index" %
                                    cf.get('DEFAULT', 'feature_index_pt'))
        # 根据索引对特征采样
        features = Feature.sample_row(features, indexs)
        # 正负样本均衡化
        rate = 0.165
        train311_train_indexs_fp = '%s/train_311.train.index' % cf.get(
            'DEFAULT', 'feature_index_pt')
        train311_train_indexs = Feature.load_index(train311_train_indexs_fp)
        train_labels_fp = '%s/train.label' % cf.get('DEFAULT',
                                                    'feature_label_pt')
        train_labels = DataUtil.load_vector(train_labels_fp, True)
        balanced_indexs = Feature.balance_index(train311_train_indexs,
                                                train_labels, rate)
コード例 #20
0
def exe_test(sess,
             data,
             batch_size,
             v2i,
             i2v,
             hf,
             feature_shape,
             predict_words,
             input_video,
             input_captions,
             y,
             capl=16):

    caption_output = []
    total_data = len(data)
    num_batch = int(round(total_data * 1.0 / batch_size)) + 1

    for batch_idx in xrange(num_batch):
        batch_caption = data[batch_idx *
                             batch_size:min((batch_idx + 1) *
                                            batch_size, total_data)]

        data_v = DataUtil.getBatchStepVideoFeature(batch_caption, hf,
                                                   feature_shape)
        data_c, data_y = DataUtil.getBatchTestCaption(batch_caption,
                                                      v2i,
                                                      capl=capl)
        [gw] = sess.run([predict_words],
                        feed_dict={
                            input_video: data_v,
                            input_captions: data_c,
                            y: data_y
                        })

        generated_captions = DataUtil.convertCaptionI2V(batch_caption, gw, i2v)

        for idx, sen in enumerate(generated_captions):
            print('%s : %s' % (batch_caption[idx].keys()[0], sen))
            caption_output.append({
                'image_id': batch_caption[idx].keys()[0],
                'caption': sen
            })

    js = {}
    js['val_predictions'] = caption_output

    return js
コード例 #21
0
ファイル: Main.py プロジェクト: dradzikowski/spam-classifier
    def run_for_set():
        start_time = LoggingUtil.log_start_time()

        data = DataUtil.prepare_data()
        cls = classifier.Classifier()
        cls.perform_with_cross_validation(data, load_from_pickle=False)

        LoggingUtil.log_end_time(start_time)
コード例 #22
0
def generate(config, argv):
    # load valid dataset index
    valid_index_fp = '%s/%s.offline.index' % (config.get('DIRECTORY', 'index_pt'),
                                              config.get('TITLE_CONTENT_CNN', 'valid_index_offline_fn'))
    valid_index = DataUtil.load_vector(valid_index_fp, 'int')
    valid_index = [num - 1 for num in valid_index]

    # load topic btm vec
    topic_btm_vec = load_topic_btm_vec(config)

    # offline / online
    data_name = argv[0]

    dis_func_names = ["cosine",
                      "cityblock",
                      "jaccard",
                      "canberra",
                      "euclidean",
                      "minkowski",
                      "braycurtis"]

    btm_dis_feature_fn = ['vote_fs_btm_dis_%s' % dis_func_name for dis_func_name in dis_func_names]
    btm_dis_feature_f = [open('%s/%s.%s.csv' % (config.get('DIRECTORY', 'dataset_pt'),
                                                fn,
                                                data_name), 'w') for fn in btm_dis_feature_fn]

    if 'offline' == data_name:
        btm_tw_cw_features = load_features_from_file(config, 'fs_btm_tw_cw', data_name, valid_index)
        LogUtil.log('INFO', 'load_features_from_file, len=%d' % len(btm_tw_cw_features))
        for line_id in range(len(btm_tw_cw_features)):
            doc_vec = btm_tw_cw_features[line_id]
            for dis_id in range(len(dis_func_names)):
                vec = [0.] * 1999
                for topic_id in range(1999):
                    topic_vec = topic_btm_vec[topic_id]
                    if 'minkowski' == dis_func_names[dis_id]:
                        vec[topic_id] = eval(dis_func_names[dis_id])(doc_vec, topic_vec, 3)
                    else:
                        vec[topic_id] = eval(dis_func_names[dis_id])(doc_vec, topic_vec)
                btm_dis_feature_f[dis_id].write('%s\n' % ','.join([str(num) for num in vec]))
    else:
        btm_vec_fp = '%s/fs_btm_tw_cw.%s.csv' % (config.get('DIRECTORY', 'dataset_pt'), data_name)
        btm_vec_f = open(btm_vec_fp, 'r')
        for line in btm_vec_f:
            doc_vec = np.nan_to_num(parse_feature_vec(line))
            for dis_id in range(len(dis_func_names)):
                vec = [0.] * 1999
                for topic_id in range(1999):
                    topic_vec = topic_btm_vec[topic_id]
                    if 'minkowski' == dis_func_names[dis_id]:
                        vec[topic_id] = eval(dis_func_names[dis_id])(doc_vec, topic_vec, 3)
                    else:
                        vec[topic_id] = eval(dis_func_names[dis_id])(doc_vec, topic_vec)
                btm_dis_feature_f[dis_id].write('%s\n' % ','.join([str(num) for num in vec]))

    for f in btm_dis_feature_f:
        f.close()
コード例 #23
0
def save_tmp_grid_jsons(tmp_grid_loc, accumulation_data, raw_data_loc):
    for i in range(5):
        for j in range(10):
            DU.mkdir(
                os.path.join(tmp_grid_loc, "p%s" % str(i + 1),
                             "m%s" % str(j + 1)))

    grid_data_info = {}

    if os.path.exists(os.path.join(tmp_grid_loc,
                                   "config.json")) and accumulation_data:
        grid_data_info = DU.load_json(os.path.join(tmp_grid_loc,
                                                   "config.json"))
        row_p = grid_data_info['row_p']
        col_m = grid_data_info['col_m']
        dir_count = grid_data_info['json_count']

    else:
        row_p = [5 + 2 * (i + 1) for i in range(5)]
        col_m = [4 + 4 * (i + 1) for i in range(10)]
        dir_count = np.zeros([len(row_p), len(col_m)], dtype=int)

    grid_data_info['row_p'] = row_p
    grid_data_info['col_m'] = col_m

    print(dir_count)
    print(row_p)
    print(col_m)

    all_data_json = DU.load_json(raw_data_loc)
    print(len(all_data_json))

    # 分栏保存数据
    for data in all_data_json.values():
        petri_net = data["petri_net"]
        v_list = data["arr_vlist"]
        p_num = get_lowest_idx(len(petri_net), row_p)
        m_num = get_lowest_idx(len(v_list), col_m)
        dir_count[p_num - 1][m_num - 1] = dir_count[p_num - 1][m_num - 1] + 1
        DU.save_data_to_json(
            os.path.join(
                tmp_grid_loc, "p%s" % str(p_num), "m%s" % str(m_num),
                "data%s.json" % str(int(dir_count[p_num - 1][m_num - 1]))),
            data)

    print(dir_count)
    # print(get_lowest_idx(7,row_p))
    if isinstance(dir_count, list):
        grid_data_info["json_count"] = dir_count
    else:
        grid_data_info["json_count"] = dir_count.tolist()
    DU.save_data_to_json(os.path.join(tmp_grid_loc, "config.json"),
                         grid_data_info)
コード例 #24
0
    def __init__(self, config):
        self.config = config

        # Load model
        self.model = Model(config)
        self.model.build_test_model()

        self.du = DataUtil(config)
        self.du.load_vocab()

        # Create session
        sess_config = tf.ConfigProto()
        sess_config.gpu_options.allow_growth = True
        sess_config.allow_soft_placement = True
        self.sess = tf.Session(config=sess_config, graph=self.model.graph)
        # Restore model.
        with self.model.graph.as_default():
            saver = tf.train.Saver(tf.global_variables())
        saver.restore(self.sess, tf.train.latest_checkpoint(config.train.logdir))
コード例 #25
0
def exe_train(sess,
              data,
              batch_size,
              v2i,
              hf,
              feature_shape,
              train,
              loss,
              input_video,
              input_captions,
              y,
              capl=16):

    np.random.shuffle(data)

    total_data = len(data)
    num_batch = int(round(total_data * 1.0 / batch_size))

    total_loss = 0.0
    for batch_idx in xrange(num_batch):
        # if batch_idx < 100:
        batch_caption = data[batch_idx *
                             batch_size:min((batch_idx + 1) *
                                            batch_size, total_data)]

        data_v = DataUtil.getBatchStepVideoFeature(batch_caption, hf,
                                                   feature_shape)
        data_c, data_y = DataUtil.getNewBatchTrainCaption(batch_caption,
                                                          v2i,
                                                          capl=capl)

        _, l = sess.run([train, loss],
                        feed_dict={
                            input_video: data_v,
                            input_captions: data_c,
                            y: data_y
                        })
        total_loss += l
        print('    batch_idx:%d/%d, loss:%.5f' % (batch_idx + 1, num_batch, l))
    total_loss = total_loss / num_batch
    return total_loss
def generate(config, argv):
    data_name = argv[0]

    word_idf_fp = '%s/words.idf' % config.get('DIRECTORY', 'devel_pt')
    with open(word_idf_fp, 'r') as word_idf_f:
        word_idf = json.load(word_idf_f)
    LogUtil.log("INFO", "load word_idf done, len(word_idf)=%d" % len(word_idf))

    char_idf_fp = '%s/chars.idf' % config.get('DIRECTORY', 'devel_pt')
    with open(char_idf_fp, 'r') as char_idf_f:
        char_idf = json.load(char_idf_f)
    LogUtil.log("INFO", "load char_idf done, len(char_idf)=%d" % len(char_idf))

    # load data set
    if 'offline' == data_name:
        # load offline valid dataset index
        valid_index_off_fp = '%s/%s.offline.index' % (
            config.get('DIRECTORY', 'index_pt'),
            config.get('TITLE_CONTENT_CNN', 'valid_index_offline_fn'))
        valid_index_off = DataUtil.load_vector(valid_index_off_fp, 'int')
        valid_index_off = [num - 1 for num in valid_index_off]

        source_file_path = config.get('DIRECTORY',
                                      'source_pt') + '/question_train_set.txt'
        source_data = load_raw_line_from_file(config, source_file_path,
                                              valid_index_off)

        features = valid_index_off
    elif 'online' == data_name:

        source_file_path = config.get('DIRECTORY',
                                      'source_pt') + '/question_eval_set.txt'
        source_data = open(source_file_path, 'r').readlines()

        features = range(len(source_data))
    else:
        source_data = None
        features = None

    id_feature_file_path = '%s/instance_fs_id.%s.smat' % (config.get(
        'DIRECTORY', 'dataset_pt'), data_name)
    feature_file = open(id_feature_file_path, 'w')

    feature_file.write('%d %d\n' % (len(source_data), 1))
    for id_num in features:
        feature = list()

        feature.append(id_num % 100000)

        Feature.save_feature(feature, feature_file)

    feature_file.close()
コード例 #27
0
def generate_spn(config, write_loc, data_idx):
    place_upper_bound = config['place_upper_bound']
    marks_lower_limit = config['marks_lower_limit']
    marks_upper_limit = config['marks_upper_limit']
    prune_flag = config['prune_flag']
    add_token = config['add_token']
    max_place_num = config['max_place_num']
    min_place_num = config['min_place_num']
    finish = False
    while finish == False:
        place_num = np.random.randint(min_place_num, max_place_num + 1)
        tran_num = place_num + np.random.randint(-3, 1)
        petri_matrix = PeGen.rand_generate_petri(place_num, tran_num)
        if prune_flag:
            petri_matrix = PeGen.prune_petri(petri_matrix)
        if add_token:
            petri_matrix = PeGen.add_token(petri_matrix)
        results_dict, finish = SPN.filter_spn(petri_matrix, place_upper_bound,
                                              marks_lower_limit,
                                              marks_upper_limit)
    DU.save_data_to_json(
        os.path.join(write_loc, "data%s.json" % str(data_idx)), results_dict)
コード例 #28
0
    def save_all_question2wordtoken(cf):
        # 加载train.csv文件
        train_data = pd.read_csv('%s/train.csv' % cf.get('DEFAULT', 'origin_pt')).fillna(value="")  # [:100]
        # 加载test.csv文件
        test_data = pd.read_csv('%s/test_with_qid.csv' % cf.get('DEFAULT', 'devel_pt')).fillna(value="")  # [:100]

        # 文件存储路径
        q2wt_q_fp = '%s/q2wt.all.question' % cf.get('DEFAULT', 'devel_pt')
        q2wt_wt_fp = '%s/q2wt.all.wordtoken' % cf.get('DEFAULT', 'devel_pt')

        # 获取qid2question
        all_q2wt = BTM.get_all_question2wordtoken(train_data, test_data)

        all_q = []
        all_wt = []
        for q in all_q2wt:
            all_q.append(q)
            all_wt.append(all_q2wt[q])

        # 存储索引
        DataUtil.save_vector(q2wt_q_fp, all_q, 'w')
        DataUtil.save_vector(q2wt_wt_fp, all_wt, 'w')
コード例 #29
0
    def __init__(self, config):
        self.config = config

        # Load model
        self.model = Model(config)
        # self.model.build_test_model()
        self.model.build_variational_test_model(mode=config.test.mode)
        logging.info('build_test_variational_model done!')
        self.du = DataUtil(config)
        self.du.load_vocab(src_vocab=config.src_vocab,
                           dst_vocab=config.dst_vocab,
                           src_vocab_size=config.src_vocab_size_a,
                           dst_vocab_size=config.src_vocab_size_b)

        # Create session
        sess_config = tf.ConfigProto()
        sess_config.gpu_options.allow_growth = True
        sess_config.allow_soft_placement = True
        self.sess = tf.Session(config=sess_config, graph=self.model.graph)
        # Restore model.
        with self.model.graph.as_default():
            saver = tf.train.Saver(tf.global_variables())
        saver.restore(self.sess, tf.train.latest_checkpoint(config.train.logdir))
コード例 #30
0
    def generate_cv_subset_index(cf, argv):
        """
        Generate index used for 5-fold cross validation
        :param cf: configuration file
        :param argv: parameter list
        :return: none
        """
        tag = argv[0]
        cv_num = 5
        cv_rawset_name = 'train_with_swap'
        train_data_size = 404290

        index_all = []
        for i in range(cv_num):
            index_all.append([])
        for i in range(train_data_size):
            index_all[int(random.random() * cv_num)].append(i)

        for i in range(cv_num):
            LogUtil.log('INFO', 'size(part%d)=%d' % (i, len(index_all[i])))

        index_fp = cf.get('DEFAULT', 'feature_index_pt')
        for i in range(cv_num):
            fold_id = i
            # train
            fp = '%s/cv_tag%s_n%d_f%d_train.%s.index' % (
                index_fp, tag, cv_num, fold_id, cv_rawset_name)
            for j in range(cv_num - 2):
                part_id = (i + j) % cv_num
                DataUtil.save_vector(fp, index_all[part_id], 'a')
            for j in range(cv_num - 2):
                part_id = (i + j) % cv_num
                DataUtil.save_vector(
                    fp,
                    [index + train_data_size
                     for index in index_all[part_id]], 'a')
            # valid
            fp = '%s/cv_tag%s_n%d_f%d_valid.%s.index' % (
                index_fp, tag, cv_num, fold_id, cv_rawset_name)
            part_id = (fold_id + cv_num - 2) % cv_num
            DataUtil.save_vector(fp, index_all[part_id], 'w')
            # test
            fp = '%s/cv_tag%s_n%d_f%d_test.%s.index' % (
                index_fp, tag, cv_num, fold_id, cv_rawset_name)
            part_id = (fold_id + cv_num - 1) % cv_num
            DataUtil.save_vector(fp, index_all[part_id], 'w')
コード例 #31
0
    def save_train_qid2question():
        # 读取配置文件
        cf = ConfigParser.ConfigParser()
        cf.read("../conf/python.conf")

        # 加载train.csv文件
        train_data = pd.read_csv('%s/train.csv' % cf.get('DEFAULT', 'origin_pt')).fillna(value="")  # [:100]

        # 存储文件路径
        qid2question_qid_fp = '%s/qid2question.train.qid' % cf.get('DEFAULT', 'devel_pt')
        qid2question_question_fp = '%s/qid2question.train.question' % cf.get('DEFAULT', 'devel_pt')

        # 获取qid2question
        train_qid2question = BTM.get_qid2question(train_data)

        train_qid = []
        train_question = []
        for qid in train_qid2question:
            train_qid.append(qid)
            train_question.append(train_qid2question[qid])

        # 存储索引
        DataUtil.save_vector(qid2question_qid_fp, train_qid, 'w')
        DataUtil.save_vector(qid2question_question_fp, train_question, 'w')
コード例 #32
0
ファイル: Main.py プロジェクト: dradzikowski/spam-classifier
    def run_for_examples():
        start_time = LoggingUtil.log_start_time()
        data = DataUtil.prepare_data()

        cls = MultinomialNB()
        vect = CountVectorizer(ngram_range=(1, 2))

        train_labels = data['label'].values
        train_features = vect.fit_transform(data['email'].values)
        cls.fit(train_features, train_labels)

        examples = ['Congrats! Boss is proud of your promotion. Keep doing well. Regards.',
                    'Congrats! You are lucky one to be offered a promotion!',
                    'Congrats! You are promoted!',
                    'Congrats! You won one million!']
        test_features = vect.transform(examples)
        predictions = cls.predict(test_features)

        print(predictions)
        LoggingUtil.log_end_time(start_time)