def run_for_set(): start_time = LoggingUtil.log_start_time() data = DataUtil.prepare_data() cls = classifier.Classifier() cls.perform_with_cross_validation(data, load_from_pickle=False) LoggingUtil.log_end_time(start_time)
def run_for_examples(): start_time = LoggingUtil.log_start_time() data = DataUtil.prepare_data() cls = MultinomialNB() vect = CountVectorizer(ngram_range=(1, 2)) train_labels = data['label'].values train_features = vect.fit_transform(data['email'].values) cls.fit(train_features, train_labels) examples = ['Congrats! Boss is proud of your promotion. Keep doing well. Regards.', 'Congrats! You are lucky one to be offered a promotion!', 'Congrats! You are promoted!', 'Congrats! You won one million!'] test_features = vect.transform(examples) predictions = cls.predict(test_features) print(predictions) LoggingUtil.log_end_time(start_time)