def binLocation(binNumber, productList): if binNumber == 1: bin1 = Final.Bin(productList) return print(bin1) if binNumber == 2: bin2 = Final.Bin(productList) return print(bin2) if binNumber == 3: bin3 = Final.Bin(productList) return bin3 if binNumber == 4: bin4 = Final.Bin(productList) return bin4 if binNumber == 5: bin5 = Final.Bin(productList) return bin5 if binNumber == 6: bin6 = Final.Bin(productList) return bin6 if binNumber == 7: bin7 = Final.Bin(productList) return bin7 if binNumber == 8: bin8 = Final.Bin(productList) return bin8 if binNumber == 9: bin9 = Final.Bin(productList) return bin9 if binNumber == 10: bin10 = Final.Bin(productList) return bin10
def main(): try: output_file = open('Final_output_result.txt', 'w') print('start:\nlearning rate has been set to:{}\niteration criteria' ' has been set to:{}\n'.format(learning_rate, epoch)) print( 'error criteria has been set to:{}\nmomentum has been set to:{}\nbias has been set to:{}'.format(error_criteria, momentum, bias)) print( 'start:\nlearning rate has been set to:{}\niteration criteria has been set to:{}'.format(learning_rate, epoch), file=output_file) print( 'error criteria has been set to:{}\nmomentum has been set to:{}\nbias has been set to:{}'.format(error_criteria, momentum, bias), file=output_file) d = Dt.Data(train_file, test_file, output_file, epsilon) ##TODO training phase d.arrange_train() # d_final = d.split_desire(d.get_desire()) # a dictionary that contains all the desire output d_final = d.get_desire() d.arrange_test() print("1 input layer, 1 hidden layer, 1 output layer\n") print("1 input layer, 1 hidden layer, 1 output layer\n", file=output_file) print("the number of input node is: {}, hidden node is: {}, output node is: {}\n".format(input_node, hidden_node, output_node)) print("the number of input node is: {}, hidden node is: {}, output node is: {}\n".format(input_node, hidden_node, output_node), file=output_file) print(" hidden node activation function is tanh function, output node activation function is sigmoid function") print(" hidden node activation function is tanh function, output node activation function is sigmoid function", file=output_file) # set to 4,4,3 is the best for the assignment 1 data # set to 11,58,3 is the best for 400 data assignment 2 print("Start the training phase\n") print("Start the training phase\n", file=output_file) b1 = Bp.Backpro(input_node, hidden_node, output_node, d_final, d.get_x(), learning_rate, file=output_file) # first:weights,second:desire output b1.run(epsilon, epoch, error_criteria, momentum) print("Start the testing phase\n") print("Start the testing phase\n", file=output_file) true = b1.test(d.get_test_new(), epsilon) desire = Fn.test(d.get_test_desire(), epsilon) print('final Training epoch is: {}\n'.format(b1.get_epoch())) print('final Training epoch is: {}\n'.format(b1.get_epoch()), file=output_file) print('final Training Sum error is: {}\n'.format(b1.get_error())) print('final Training Sum error is: {}\n'.format(b1.get_error()), file=output_file) print('final Training Mean squared error is: {}\n'.format((1 / len(d_final)) * b1.get_error())) print('final Training Mean squared error is: {}\n'.format((1 / len(d_final)) * b1.get_error()), file=output_file) Fn.final(d.get_final_class(), desire, true, b1.get_error(), output_file, d_final) print('final Training epoch is: {}\n'.format(b1.get_epoch())) print('final Training epoch is: {}\n'.format(b1.get_epoch()), file=output_file) except IOError: print('File Error') finally: output_file.close()
def lose(self): import Final self.Form = Final.MyDialog() self.fui = Final.Ui_Dialog() self.fui.setupUi(self.Form) self.fui.Exit.clicked.connect(self.out) self.fui.Rematch.clicked.connect(self.rematch) self.Form.exec()
def draw(self): import Final self.Form = Final.MyDialog() self.fui = Final.Ui_Dialog() self.fui.setupUi(self.Form) self.fui.Exit.clicked.connect(self.out) self.fui.label.setPixmap(QPixmap(".\\img/draw.png")) self.fui.Rematch.clicked.connect(self.rematch) self.Form.exec()
def cross_validate(n): accuracy_list = [] df = tt.preProcess() for i in range(n): X_train, X_test = train_test_split(df, test_size=0.1) dict, temp, classDict = tt.train_supervised(X_train) accuracy = tt.predict_supervised(dict, X_test, classDict) accuracy_list.append(accuracy) mean_accuracy = np.mean(accuracy_list) print("mean accuracy is: ", mean_accuracy) return np.mean(accuracy_list)
def upload(): target = os.path.join(APP_ROOT, "static/") print(target) if not os.path.isdir(target): os.mkdir(target) for file in request.files.getlist("file"): print(file) filename = file.filename destination = "".join([target, filename]) print(destination) #os.remove(r".\static\segmented.jpg") file.save(destination) inferencecopy2.DeeplabSeg(Image.open(destination)) classpredic = Final.LdaAnalysis(Image.open(r'.\static\segmented.jpg')) #os.remove("segmented.jpg") return render_template("complete.html", image_name1='segmented.jpg', image_name2=filename, value=classpredic)
def buttonClicked(self): sender = self.sender() if sender.text() == "Show Basic": Final.show_regular(GenreList) if sender.text() == "Show Google": googlemap.show_google(GenreList) if sender.text() == "Show Location": if len(GenreList) == 1: self.statusBar().showMessage('') location.show_location(GenreList[0]) else: self.statusBar().showMessage('Only Accept One Input!') if sender.text() == "Show Density": if len(GenreList) == 1: self.statusBar().showMessage('') density.show_density(GenreList[0]) else: self.statusBar().showMessage('Only Accept One Input!')
def somefunc(link): http=urllib3.PoolManager() req=http.request('GET',link) soup=BeautifulSoup(req.data,'html.parser') #print("Step 1\n") f=open('Review.txt','a') global no global r1 #print('number =') #print(no) r1.append(rank()) for e in soup.find_all('h1'): h1=e.get('class') if h1 is not None and 'heading_title' in h1: f.writelines("******************************************") f.writelines(e.text) r1[no].name=e.text f.writelines("******************************************") f.writelines("\n\n") e1=soup.find_all("div",{"class":"entry"}) sum=0 for e in e1[1:10]: #if e.text is not None in e: h=e.text try: f.writelines(e.text) num=Final.rate(e.text) f.writelines('\n\n') print(e.text) if num > 3: f.writelines("Excellent Review: ") print("Excellent Review: ") elif num > 1: f.writelines("Good Review: ") print("Good Review: ") elif num < 0: f.writelines("Bad Review: ") print("Bad Review:") else: f.writelines("Average Review: ") print("Average Review: ") f.writelines(str(num)) print(num) sum=sum+num f.writelines('\n\n\n') except: print('some Error') #print(sum) #print(no) r1[no].rate=sum f.close() no=no+1
def predict(): clf = joblib.load('finalModel.pkl') to_predict_list = request.form.to_dict() card_id = request.form.getlist('card_id') date = pd.to_datetime(request.form['firstactivemonth'], errors='coerce') f1 = request.form.getlist('feature_1') f2 = request.form.getlist('feature_2') f3 = request.form.getlist('feature_3') data = { 'card_id': card_id, 'first_active_month': date, 'feature_1': f1, 'feature_2': f2, 'feature_3': f3 } data = pd.DataFrame(data) prediction = final.final_fun_1(data) print("Loyalty Score", prediction) return jsonify({'prediction': str(prediction)})
def ShelfLocation(shelf): shelf3 = Final.shelf() shelf2 = Final.shelf() shelf1 = Final.shelf()
import readFile import Final #Creates aisle aisle1 = Final.Aisle() aisle2 = Final.Aisle() aisle3 = Final.Aisle() aisle4 = Final.Aisle() aisle5 = Final.Aisle() aisle6 = Final.Aisle() def ShelfLocation(shelf): shelf3 = Final.shelf() shelf2 = Final.shelf() shelf1 = Final.shelf() #b =binLocation(readFile.binNum[0],readFile.descript[0]) # def binLocation(binNumber, productList): if binNumber == 1: bin1 = Final.Bin(productList) return print(bin1) if binNumber == 2: bin2 = Final.Bin(productList) return print(bin2) if binNumber == 3: bin3 = Final.Bin(productList) return bin3 if binNumber == 4:
def make_grid(self, board_size): return Final.make_grid(list(board_size))
def make_ants(self, ant_locations): return Final.make_ants(tuple(map(tuple,ant_locations)))
import Final import cv2 ls = {} # required dictionary while (1): val = Final.GetValues(ls) print(ls) if val == 27: #press esc to break the loop break cv2.destroyAllWindows()
def adding(): Final.add_person("face_recognition_system/people/", "rectangle", person1.get())
def attendance(): Final.recognize_people("face_recognition_system/people/", "rectangle")
from Start import * from Final import * from Game import * a = Start() a.blank() b = Game() b.window(int(a.start_count), int(a.start_money)) c = Final() name = b.zn[0] money = b.mon_all[4] x = list(zip(name, money)) x.sort(key=lambda f: f[1]) x.reverse() name = [i[0] for i in x] #список имен с капиталом по убыванию money = [i[1] for i in x] #список капиталов по убыванию c.window(name, money, b.mon_all) print(c.mnoey)