def w2v_ic(word, buckets=20): global ic_dict if not ic_dict: ic_dict = LoadData.load_ic() im = [0]*buckets cn = [0]*buckets if word in ic_dict: if ic_dict[word].IMAGEABILITY != None: im = bucket(ic_dict[word].IMAGEABILITY, 7., buckets) elif word in model: for w2 in model.most_similar(word, topn=20): if w2[0] in ic_dict and ic_dict[w2[0]].IMAGEABILITY != None: im = bucket(ic_dict[w2[0]].IMAGEABILITY, 7., buckets) break if ic_dict[word].CONCRETENESS != None: cn = bucket(ic_dict[word].CONCRETENESS, 5., buckets) elif word in model: for w2 in model.most_similar(word, topn=20): if w2[0] in ic_dict and ic_dict[w2[0]].CONCRETENESS != None: cn = bucket(ic_dict[w2[0]].CONCRETENESS, 5., buckets) break return cn + im
def ic(word, buckets=5): if type(word) == tuple: word = word[0] global ic_dict if not ic_dict: ic_dict = LoadData.load_ic() im = [0]*buckets cn = [0]*buckets if word in ic_dict: if ic_dict[word].IMAGEABILITY != None: im = bucket(ic_dict[word].IMAGEABILITY, 7., buckets) if ic_dict[word].CONCRETENESS != None: cn = bucket(ic_dict[word].CONCRETENESS, 5., buckets) return cn + im